
TP : Informatique VI ∼ Graphes Informatique tronc commun : PCSI2

Laurent Pietri ~ 1 ~ Lycée Joffre - Montpellier

TP6 – Graphes

A – Travaux dirigés
Exercice 1 : Matrices d’adjacence

1. Ecrire la matrice d’adjacence associé au graphe ci-dessous.

2. Tracer les graphes associés aux matrices d’adjacence donnés : 𝑀𝑀1 (𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜é),𝑀𝑀2(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜é).

Exercice 2 : Listes d’adjacence
1. Ecrire les listes de successeurs du graphe suivant :

2. Tracer le graphe de la liste de successeurs suivante :

{𝐴𝐴 : [𝐵𝐵] ,𝐵𝐵 : [𝐶𝐶,𝐸𝐸] ,𝐶𝐶 : [𝐵𝐵] ,𝐷𝐷 : [] ,𝐸𝐸 : [𝐴𝐴,𝐵𝐵]}

Exercice 3 : Route la plus rapide

Le schéma ci-dessus représente un réseau d’appareils connectés qui peuvent être des ordinateurs, des smartphones,

des boitiers internet, des routeurs. Les arêtes représentent les connexions filaires ou sans fil. Les nombres sont les temps de
transmission en unité de temps.
1°) Combien de routes différentes peut prendre un message entre 𝑀𝑀1 𝑒𝑒𝑒𝑒 𝑀𝑀15 ? Une route ne peut passer qu’une fois par un
appareil donné.
2°) Parmi ses routes laquelle est la plus rapide.

B – Travaux pratiques
Exercice 4 : Degré d’un graphe
 Soit le graphe suivant :

 Ecrire une fonction deg(g,s) qui retourne le degré du sommet s.

TP : Informatique VI ∼ Graphes Informatique tronc commun : PCSI2

Laurent Pietri ~ 2 ~ Lycée Joffre - Montpellier

Exercice 5 : Implémentation de graphe
 On considère le graphe non orienté suivant () :

1. Ecrire la définition de la liste m qui représente la matrice
d’adjacence du graphe.

a. Ecrire une fonction nb_aretes(m) qui prend en
paramètre une matrice m représentant un graphe et
renvoie le nombre d’arêtes du graphe.

2. Ecrire un dictionnaire en Python, où clés sont les sommets, pour
représenter ce graphe « m2 » à l’aide des listes d’adjacence. Ecrire une fonction « sommets(s,g) » qui prend en
paramètres un sommet s et un graphe g, sous la forme d’un dictionnaire, et renvoie la liste des sommets liés par
une arête au sommet s.

Exercice 6 : Ajout d’un sommet isolé

Les graphes sont supposés non orientés et non pondérés. Une variable g est définie pour représenter un graphe. Un
sommet est représenté par un caractère comme ’A’. On pourra tester vos fonctions sur le graphe « m2 » précédent.

1. Ecrire une fonction qui prend en paramètres un graphe g représenté par un dictionnaire des listes d’adjacence et
un point s et ajoute le point au graphe en tant que sommet isolé.

2. Ecrire une fonction qui prend en paramètres un graphe g représenté par une liste des listes d’adjacence et un point
s et ajoute le point au graphe en tant que sommet isolé.

3. Ecrire une fonction qui prend en paramètres un graphe g représenté par une matrice d’adjacence et complète la
matrice pour ajouter au graphe un sommet isolé.

Exercice 7 : Parcours en largeur
On modélise un site web par une page d’accueil qui contient des liens hypertextes permettant d’accéder à d’autres

pages du site qui peuvent contenir également des liens hypertextes. Le site web contient 6 pages numérotées de 0 à 5. On
considère le graphe G suivant représentant la structure du site web.

 On utilise la liste « couleur » pour mémoriser la couleur des sommets. Un sommet est blanc lorsqu’il n’a pas été
traité. Lorsqu’on commence à traiter un sommet i, il est gris. Après avoir traité en largeur tous les successeurs (qui
deviennent gris) de ce sommet i, le sommet i est noir.
 On utilise une deque D pour gérer la file d’attente FIFO.

1. Construire la matrice d’adjacence M du graphe G.
2. Ecrire une fonction « cycle » qui admet comme arguments une matrice d’adjacence M et un sommet de départ

« début ». Cette fonction parcourt en largeur le graphe G. La fonction retourne « True » lorsqu’un cycle passe
par un sommet (possibilité de retour à ce sommet). La fonction retourne « False » s’il n’existe aucun cycle passant
par le sommet S. Pour cela on pourra compléter le code suivant :

TP : Informatique VI ∼ Graphes Informatique tronc commun : PCSI2

Laurent Pietri ~ 3 ~ Lycée Joffre - Montpellier

Exercice 8 : Conversion
On dispose d’un graphe non orienté sous la forme de listes d’adjacence, par

exemple :
 𝑔𝑔 = {"A": ["B", "D"], "B": ["A", "C", " D"], "C": ["B"], "D": ["A", "B"]}

1. La fonction conversion1 prend en paramètre un tel graphe et renvoie la
matrice d’adjacence correspondante. Compléter cette fonction. La matrice
obtenue avec le graphe g est représentée par la liste :

 [[0, 1, 0, 1], [1, 0, 1, 1], [0, 1, 0, 0], [1, 1, 0, 0]]

2. La fonction conversion2 prend en paramètre une matrice d’adjacence et
renvoie le graphe correspondant. On doit donc retrouver le graphe g à partir
de la matrice m :

[[0, 1, 0, 1], [1, 0, 1, 1], [0, 1, 0, 0], [1, 1, 0, 0]]

Exercice 9 : Polonaise inversée

On considère une expression écrite en notation polonaise inverse. Cette
expression est représentée par une liste. Par exemple, l’expression ≪ 83+5 × ≫
est représentée par la liste [8, 3, ’ + ’, 5, ’ ∗ ’]. En mathématiques, la forme
d’écriture habituelle est (8 + 3) × 5 et la valeur est 55. On utilise une pile pour
réaliser l’algorithme suivant :

- Ecrire une fonction calcule qui prend en paramètre une liste représentant
une expression comme ci-dessus, notée exp et renvoie la valeur de
l’expression. Les opérateurs peuvent être "+", "*", "-", ou"/". Une pile est
représentée par le conteneur deque du module collections.

- Tester la fonction en vérifiant les résultats qui suivent :
- [7, 2, ’ + ’, 3, ’ ∗ ’] = 27 ; [2, 5, ’ ∗ ’, 4, ’ + ’] = 14 𝑒𝑒𝑒𝑒 [8, 2, ’/’, 3, ’ − ’] = 1.

