TP : Informatique IV ~ Programmes Informatique tronc commun : PCSI2

TP4 — Ecriture et analyse d'un programme

A — Travaux dirigés

Exercice 1 : Syracuse

On définit la suite de Syracuse de la maniere suivante. Le premier terme est un entier naturel non nul n. Si un
terme est pair, le suivant vaut sa moitié, si un terme est impair, le suivant vaut le triple plus un.

Dans le programme suivant rajouter des assertions afin de vérifier que n est strictement positif et une autre qui

permettra d’éviter des problémes si on utilise un flottant dont la valeur n’est pas entiere.

Exercice 2 : Pair ou impair
La fonction qui suit prend en parametre un entier n et doit envoyer True si n est un nombre pair et False sinon.
Cependant cela ne fonctionne pas comme prévu. Modifier le programme et expliquer.

def pair(n):
"""n est un entier et renvoie True si n est pair, False sinon
if nk2:
return True
else:
return False

Exercice 3 : Tuple

Quel est le type du résultat renvoyé par la fonction f. Quelle est la valeur de ¢ ?

Entrée [20]: def f(x):
return 2%*x,3*x,4%x

a,b,c=F(2)
print(c)

Exercice 4 : Invariant de boucle

Dans la fonction suivante, les valeurs des variables a et b sont des entiers naturels :

Entrée [1]: def f(a,b):
s,k=a,b
while k>©:

s=s+1
k=k-1
return s

Quelle affirmation est fausse ?
e La propriété « s+ k = a+ b » est un invariant de la boucle while.
e La valeur finale de k est 1.
e La propriété « k = 0 » est un invariant de la boucle while.
o Le résultat renvoyé est égal a la somme a+Db.

Exercice 5 : Division euclidienne
La fonction div_euclid doit renvoyer le quotient et le reste de la division euclidienne de m par n ot m et n sont

deux entiers naturels avec n non nul. Le code de cette fonction comporte une erreur.

Laurent Pietri ~1~ Lycée Joffre - Montpellier



TP : Informatique IV ~ Programmes Informatique tronc commun : PCSI2

Entrée [2]: def div_euclid(m,n):
"""m et n sont deux entiers naturels, n est non nul, renvoie le quotient
et le reste de la division de m par n - une propriété invariante est
m==n*q+r"""
assert n!=0
q,r=0,m
assert m==n*g+r
while r>n:
r=r-n
q=q+1
assert m==n*qg+r
return g,r

div_euclid(25,3)

Oout[2]: (8, 1)

1°) Prouver la terminaison de l’algorithme.

2°) Prouver que m = n X q + r est un invariant de la boucle. Peut-on en déduire que 1'algorithme est correct ? Si ce n’est
pas le cas, corriger le code.

3°) Ecrire un jeu de tests pour cette fonction.

Exercice 6 : Algorithme de Horner
L’objectif est de comparer deux algorithmes permettant d’évaluer la valeur de P(x) pour une valeur de x donnée
avec : P(x) = apx, + Qn_1Xp_1+...+ayx, + a;x; + ay. La liste des coefficients est notée a = [ag, aq,...,a0,] ;

Le programme ci-dessous correspondant a l’algorithme 1 :

Entrée [1]: def polynome(x,a):

p=a[@]

for i in range(1,len(a)):
puissance=1
for j in range (1,i+1):

puissance=puissance*x

p=p+a[i]*puissance

return p

Entrée [2]: a=[1,2,1]
polynome(2,a)

out[2]: 9

1°) Donnez la complexité de 'algorithme 1.

2°) On va écrire un algorithme 2, appelé algorithme de Horner, basé sur une écriture différente de P(x) :

P(x) = ao + x(a; + x(az+... +x(a,_4 + xa,)...)). Donc ici, la liste des coefficients est parcourue dans I'ordre inverse ; la
variable p est initialisée avec a, et nous n’utilisons qu’une seule boucle dans laquelle est effectuée une multiplication par

x et Paddition du coefficient précédent. Ecrire le programme et déterminer sa complexité.

Laurent Pietri ~2~ Lycée Joffre - Montpellier



