Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

[F6a — Graphes : Vocabulaires et représentations

Le mathématicien suisse Leonhard Euler montre, en 1735, I'impossibilité de passer une fois et une seule par chacun
des sept ponts de la ville de Konigsberg en revenant & son point de départ. Ce probléme est souvent considéré comme la
naissance de la théorie des graphes. Le physicien Gustav Kirchhoff utilise les graphes en 1847 pour résoudre un probléme
d’électricité qu’Arthur Cayley élargira. On trouve des applications de cette théorie dans d’innombrables domaines comme

les réseaux informatiques...

Objectifs :
- Connaitre le vocabulaire des graphes
- Comprendre la structure relationnelle d’un graphe.

= Ftre canable d’imnlémenter un eranhe.

I — Vocabulaire
I-1) Vocabulaire général
- Graphe
Un graphe est un ensemble de sommets reliés entre eux par des arcs. Par exemple sur une page « internet » chaque page
forme un sommet et les liens permettant de naviguer d’une page a ’autre constituent les arcs.

- Graphe orienté
Voici un exemple de graphe possédant cinq sommets et six arcs. Sur cet exemple il y un arc qui va de A vers B, mais il
n’y en a pas qui va de B vers A. On parle de graphe orienté lorsqu’on distingue ainsi un sens pour les arcs.

- Graphe non orienté
Lorsqu’en revanche le sens des arcs n’est pas significatif, c’est-a-dire que 1'on s’intéresse uniquement a la présence
d’un arc entre deux sommets, on parle de graphe non orienté. On préfere alors parler d’arétes au lieu d’arcs dans ce cas.

O

Il y a donc 5 sommets et 6 arétes dans notre cas.

- Boucle
Une boucle est une aréte qui a pour extrémités les mémes sommets.

/@
<

Le nombre de voisins d’'un sommet est son degré, il est noté d(sommet). C’est le nombre d’arétes liées a ce sommet. Si le

- Ordre
L’ordre d’un graphe est le nombre de sommets.

- Degré

sommet a un degré « 0 » on dit qu’il est isolé.
Dans le cas d’un graphe orienté on parle de :
o Degré entrant : nombre d’arcs arrivant au sommet. Le degré entrant d’un sommet A se note d, (4).
o Degré sortant : nombre d’arcs sortant du sommet. Le degré sortant d’un sommet A se note d_(A4).

Laurent Pietri ~1~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

- Graphe simple (les seuls au programme)
Un graphe est simple si deux sommets quelconques sont reliés au plus par une aréte

- Graphe complet
Si chacun des sommets est relié directement a tous les autres, on parle de graphe complet.

1-2) Voisinage et chemin

- Chemin
Lorsqu’il y a un arc d’'un sommet s vers un sommet t, on dit que t est adjacent a s. Les sommets adjacents a s sont
également appelés les voisins de s.

Dans un graphe donné, un chemin reliant un sommet s a un sommet t est une séquence finie de sommets reliés

deux a deux par des arcs menant de s a t.

Sur le schéma pour aller de E & C on peut prendre le chemin :
E—>B->CmaisaussiE > A—->B->C(C

- Chemin simple ou élémentaire
Un chemin est dit simple s’il n’emprunte pas deux fois le méme arc et élémentaire s’il ne passe pas deux fois par le méme

sommet. (On parle aussi de chaine pour les graphes orientés)

- Cycle
Un chemin simple reliant un sommet a lui-méme est appelé un cycle : c’est le cas par exemple de A > B - F - A

- Longueur et Distance
o La longueur d’'un chemin est le nombre d’arcs qui constituent ce chemin.
o La distance entre deux sommets est la longueur du plus court arc reliant ces deux sommets.
- Connexité
Un graphe est connexe si pour tout couple de sommets il existe un chemin reliant ces deux sommets. (Un graphe complet

est forcément connexe)

1-3) Poids et étiquette
On peut ajouter des informations sur les graphes comme le poids et les étiquettes.
- Un graphe est pondéré si un nombre, un poids, est associé a chaque aréte ou a chaque arc.
- Un graphe est étiqueté si un texte, une étiquette, est associé a chaque aréte ou a chaque arc.
Dans un réseau routier par exemple, un poids peut étre le nombre de kilometres d’une route liant deux lieux, une

étiquette peut étre le nom de cette route.

Laurent Pietri ~2~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

Exemple de graphes pondérés :

&

15
w
] \/@)_\15
W
v 20
[=>]
¥ » L7
Lo
=]
So\ﬁf/za%

IT — Représentation schématique
1I-1) Principe

La manieére la plus simple de représenter un graphe est de faire un dessin. Les sommets sont représentés par des
points, les arétes par des lignes, chacune reliant deux points.

Le graphe suivant est non orienté et a cinq sommets. Il est connexe et d’ordre 5.

=

Les sommets sont représentés par des points mais attention, un sommet peut représenter une entité complexe :

une personne dans un réseau social, un carrefour dans un réseau routier, un routeur dans un réseau internet...

I1-2) Exemples
a) Graphe non orienté

()
[

Il est plus pratique de nommer les sommets : A-B-C-D - E.

- Le degré du sommet A est 3.

- Ses voisins sont B, C et E.

- L’aréte [AB] a pour extrémités A et B.

- [AC] est un chemin de longueur 1, [AEBD] est un chemin de longueur 3, [ABD] est un chemin de longueur 2.
[ACBEA] est un cycle.

- L’ensemble des sommets est S = {A, B, C, D, E}.

- L’ensemble des arétes est A = {{A, B}, {A, C}, {A, E}, {B, C}, {B, D}, {B, E}}.

b) Graphe orienté

- Ce graphe est orienté, non connexe.
- Le sommet D est isolé.
- Le degré entrant de B est 3, le degré sortant est 2...

IIT — Listes et matrices d’adjacence
IT1-1) Listes
e On peut représenter un graphe non orienté en précisant pour chacun
de ses sommets la liste de ses voisins. Ces listes s’appellent des listes @
d’adjacence. L’ordre d’écriture n’a pas d’importance. Dans le cas de ev

graphes orientés, on peut présenter des listes de successeurs ou des listes e

de prédécesseurs ou les deux. On obtient pour l'exemple suivant les e
listes d’adjacences suivantes : G

Laurent Pietri ~3~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

- A:B,CE
- B:AC D E
- C:AB
- D:B
- EAB
On peut écrire la liste d’adjacence sous formes de listes ou de dictionnaires :
=G ={A:[B,C,E\,B:[A,C,D,E],C:[A,B],D:[B],E: [A, B]}

e On obtient pour 'exemple de graphe orienté listes de successeurs suivantes :

- A:B
- BI C, E o ’@
- C:B A
o o

(®)

- E:AB

=G ={A:[B],B:[C,E],C:[B],D:[],E:[A, B]}

I11-2) Matrices

En mathématiques, on peut associer & un graphe une matrice carrée (n,n), ou un tableau, ot n est le nombre de
sommets. Les sommets sont numérotés de 1 a n. Il s’agit d’'un tableau a n lignes et n colonnes.

A T'intersection d’une ligne i et d’une colonne j le nombre représente la présence ou I’absence d’une aréte entre les
sommets i et j : 1 pour la présence, 0 pour I'absence.

- Graphe non orienté

O QwWe

—_ o~ = ol
=N Hus)
coor N
oo o~ old
o O O = -
— O, KRk O
— == O
OO O = =
o O OO
o OO

La diagonale ne contient que des 0 et est un axe de symétrie du tableau. (Il faudrait des boucles pour avoir des 1).
On dit que la matrice est symétrique.

Le méme graphe peut étre représenté par des matrices différentes. Elles dépendent de I'ordre des sommets qui est
pris en compte. La matrice représentative du graphe est appelée matrice d’adjacence.

- Graphe orienté

w oo oo
—_— o W o N
O O o NO
SO O OO
SO O O

Pour tenir compte de la pondération des arcs, on remplace les « 1 » par la valeur de la pondération dans la matrice.
Par exemple le point B vérifie pour ces successeurs :
- B:(C2), (E4) et 0 pour le reste.

IV) Représentation d’'un graphe en python
IV-1) Implémentation par matrice d’adjacence

a) Principe

En Python, on représente généralement une matrice (n, n) par une liste contenant n listes de longueur n. Chacune
de ces n listes représente une ligne de la matrice. Les éléments de chacune de ces n listes sont les n coefficients d’une ligne.

Laurent Pietri ~4 ~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

Si on numeérote les lignes de la matrice de 1 a n, il faut faire attention aux indices qui en Python commencent a 0.
Pour simplifier le probléeme, numérotons les sommets par des chiffres et prenons comme exemple le graphe orienté

suivant G1 :

O—®

©

Celui-ci est représenté par huit sommets tel que S = {0, ...,7}

Et si on prend les successeurs on a 9 arétes tel que :
A ={(0,1),(0,7),(1,2),(3,1), (4,0),(5,6), (6,1), (6,5), (7,4)}

On définit donc un graphe en écrivant par exemple la matrice 8 X 8 tel que :

[=NelNel o loNeNe]
O R OO R OO
SO OO OO RO
(=N eNeNeNoNoNo Nl
S OO OO OO O
il e e N N Ne Nl
SO R OO O OO
S OO OO OO

Comme le graphe n’a pas de boucles on a une diagonale remplie de zéro. La premiere ligne se lit : « Le sommet
« 0 » a pour successeurs les sommets « 1 » et « 7 ».
Dans le cas d’'un graphe pondéré, le principe est le méme. Pour un graphe pondéré, les coefficients 1 sont remplacés

par les poids.

b) Algorithme

L’implémentation consiste & utiliser une matrice de booléens de taille (n X n), dont la case d’indice (i, j) vaut
« True » si et seulement si Paréte (i, j) appartient & A. Notons que le graphe est non orienté si et seulement si la matrice
qui lui est associé est symétrique.

Le principal intérét de cette représentation est de pouvoir vérifier en temps constant si une aréte existe. De la
méme maniere, on a maintenant la possibilité d’ajouter ou de retirer une aréte en temps constant, que le graphe soit orienté
ou non.

Voici une méthode d’implémentation de graphe :

e Construction de la matrice (n X n) :

def nouveau(n):
return([[False]*n for i in range(n)])

e Ajout d’arétes

def ajoute_arete(G,i,j):
G[i][j]=True

e Suppression d’arétes :

def supprime_arete(G,i,j):
G[i][]j]=False

e Ajout de sommets :
On peut supposer que le sommet ajouté se place en derniére position mais si ce n’est pas le cas, il faudra en tenir

compte.

def ajoute_sommet(G):
n=1len(G)
for i in range(n):
G[i].append(False) #0n ajoute "False" a lLa fin de chaque Ligne
G.append([False]*(n+1)) #0n ajoute une ligne de False pour le sommet supplémentaire 'n+1’

Laurent Pietri ~5~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

On passe ainsi a une matrice (n + 1) X (n + 1)).
e Suppression de sommets :

def supprime_sommet(G,i):
n = len(G)
for k in range(n):
G[k]=G[k][:i]+G[k][(i+1):] #On supprime la colonne i
del G[i] #0On supprime Lla ligne 1i

Voici un exemple de suppression d’un sommet a partir d’'une matrice 3 X 3.
n=3
G = nouveau(n)
for i in range(n):
for j in range(n):
if rd.random()>0.5:
G[i][j]=True

print(G)
supprime_sommet(G,2)
print(G)

[[True, False, False], [True, False, True], [True, True, False]]
[[True, False], [True, False]]
7

IV-2) Implémentation par liste d’adjacence

a) Principe

Cette implémentation consiste a représenter le graphe par une liste de n listes, ou la case d’indice i contient la liste
des sommets j tels que (i ; j) soit une aréte du graphe (appelée liste d’adjacence du sommet i). On peut se contenter de
cette liste puisque la fonction « len » permet de récupérer la valeur de n. On implémente donc le graphe G1 de la maniére

suivante :

Gl = [[1,7] ,02] ,[] ,[1] ,[e] ,[6] ,[1 ,5] ,[4]]

Par exemple [1,7] représente les successeurs de « 0 ». Dans 1'exemple ci-dessus, les listes d’adjacences sont triées

par ordre croissant. Ce n’est pas du tout une nécessité absolue mais c’est pratique.

b) Algorithme
Voici les étapes principales d’implémentation d’un graphe par liste d’adjacence a I'aide de listes.
e Création de la liste

def nouveau(n):
return([[] for i in range(n)]) #Création d'un graphe & n sommets initialement sans aréte

o Ajout d’aréte
def ajoute_arete(G,i,j):
G[i].append(j)
e Suppression d’aréte
def supprime_arete(G,i,Jj):
G[i].remove(]j)

e Ajout et suppression d’aréte dans le cas d’un graphe non orienté.

#Attention, si le graphe est non orienté il faudra supprimer L'aréte (j,1)
#mais aussi (1,7)
def ajoute_arete_no(G,i,j):
G[i].append(j)
G[3j].append(i)
def supprime_arete_no(G,i,j):
G[i].remove(])
G[j].remove(i)

e Ajout de sommet

#Pour ajouter un sommet, on va rajouter une Lliste vide au bout de G
def ajoute_sommet(G):

G.append([])

e Suppression d’un sommet

Lorsqu’on supprime un sommet i, il faut enlever le sommet mais aussi réindexer les autres sommets. En effet, a
partir du moment ot S contient des entiers consécutifs, un renommage des sommets {i+1,..,n} est nécessaire. On définit a
cet effet une fonction de réindexation. On met & jour ensuite toutes les listes et on supprime la i-eme liste.

Laurent Pietri ~6~ Lycée Joffre - Montpellier

Cours : Informatique VI ~ Représentation des graphes Informatique tronc commun : PCSI2

Il faudra aussi penser a enlever les arcs reliés a ce sommet.
def supprime_sommet(G,i):

n = len(G)
for k in range(n):
if i in G[k]:

G[k].remove(i) # On efface les arcs reliés du noeud k au noeud i en supprimant La valeur i dans G[R]
G[k]:[r‘eindelxe(i,x) for x in G[k]] #0n met la valeur x ou x-1 dans G[R]

G.pop(i) #0n enléve le noeud a L'index i du graphe G.

Un exemple pour les différentes fonctions étudiées

n=4

G = nouveau(n)

ajoute arete(G,1,3);ajoute arete(G,2,1);ajoute_arete(G,1,2);ajoute arete(G,3,2)
print(G)

supprime_sommet2(G, 2)

print(G)

[r1, 13, 21, [1], [2]]
[r1, 21, [11l

IV-3) Implémentation par dictionnaire

L’utilité principale du dictionnaire est de représenter des graphes dont les sommets sont quelconques (pas des
entiers comme précédemment) par listes d’adjacence. Ainsi 'ensemble des sommets du graphe est ensemble des clés du
dictionnaire.

Les dictionnaires dans le cas de manipulation de graphes sont pratiques si les sommets sont différents des entiers.
Voici un exemple simple avec de petites fonctions.

e Exemple de graphe :
Z = {“All:[IIB",“EII],“B“:[IIAII,“C“’IIEII],||Cll:[IIB“]JIIDII:[]JIIEII:[IIAIIJIIBII]}
o Degré du sommet « s » :

def deg(g,s): #g est un graphe, s est un sommet , calcule lLe voisinage de s
if s in g:
return len(g[s])
e Voisinage de « s » :
def sommets(g,s): #Donne le voisinage de s
if s in g:
return g[s]

e Ajout de sommet :
def ajoute sommet i(g,s): #ajoute un sommet isolé

gls]1=[1]

e Ajout d’aréte :
def ajoute_arete(g,s,a):
if s in g:
g[s].append(a) #0n rajoute un arc de "s" vers "a"

#g[a].append(s) #Si lLe graphe est non orienté
return g

e Un exemple qui teste les différentes fonctions

Z = {"A":["B","E"],"B":["A","C","E"],"C":["B"],"D":[],"E":["A","B"]}
print(deg(Z,"A"))

print(sommets(Z,"A"))

ajoute_sommet_i(Z,"F")

print(Z)

print(ajoute_arete(Z,"F","A"))

2

['B", "E']

{'A': ['B', 'E'], 'B"': ['A', 'C', "E'], 'C': ["'
{'A*: ['B', 'E'], 'B': ['A", 'C", 'E'], 'C': [

B'], 'D': [1, 'E': ['A', 'B'], 'F': []}
'], 'D': [1, CE': ['A, UB'l, Fi ['A']}

Laurent Pietri ~7~ Lycée Joffre - Montpellier

