Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

IF5 — Algorithmes de tri

L’objectif de ce chapitre est de mettre en place des algorithmes qui réalisent un tri ordonné d’une liste aléatoire.
Nous allons voir dans un premier temps des tris par comparaison puis des tris par comptage.

Evidemment, un algorithme de tri est efficace si, lorsqu’il retourne la liste triée, il a effectué ce tri en un temps le
plus court possible. Le caractére aléatoire de la liste a trier va nous conduire a discuter des complexités dans le meilleur et

le pire des cas.

Objectifs :
- Etre capable de programmer des tris par sélection, par insertion, par fusion ou « rapides ».
- Retenir le cotit des différents tris.
- Reconnaitre un tri par comptage et estimer son cofit.

I — Introduction
I-1) Contexte

On considere des données numériques. Trier ces données consiste a les ranger en ordre croissant ou décroissant.
Une opération de tri consomme un temps de calcul important sur un ordinateur et il donc nécessaire d’étudier la complexité
temporelle des différents algorithmes de tri. On peut évaluer cette complexité dans le "pire des cas', ou dans le "meilleur
des cas" ou enfin "en moyenne" et ensuite utiliser I’algorithme qui convient le mieux suivant la situation.

Les algorithmes étudiés, dans un premier temps, sont basés sur des comparaisons successives entre les données et
éventuellement une permutation des éléments comparés. Le nombre de permutations est toujours inférieur au nombre de
comparaisons. Ainsi la complexité d’un algorithme est du méme ordre de grandeur que le nombre de comparaisons effectuées
par cet algorithme.

Il y a n! maniéres de ranger n données (n! permutations). La premiére comparaison concerne deux des données a
et b de la liste et consiste a poser la question : a<b ? La réponse permet de diviser les n! manieres en deux parties égales.

N . . n! . N . . . 5e y
Donc apreés k comparaisons, il restera o* permutations a envisager. Le tri sera terminé lorsqu’il ne restera plus qu’une

permutation, soit si :
n!
7k < 1 =2 >n! =kin(2) = In(n)

Deés que n est grand on peut utiliser la formule de Stirling :
In(n!) ~nin(n)
nin(n)
~ In(2)
Conclusion : Le minimum de comparaisons est donc de 'ordre de n log,(n).

I-2) Fonctions natives de python
Introduisons deux fonctions que python propose nativement « .sort » et « sorted(L) ». Par exemple :

import random

n=20

L=[random.randint(1,n) for i in range (n)]

LL=sorted(L)

#L.sort() #Méme rdéle sur sorted sauf qu'on perd la liste initiale
print(L)

print(LL)

[16, 18, 17, 20, 12, 14, 6, 1@, 12, 15, 6, 12, 19, 4, 9, 9, 5, 4, 4, 8]
[4, 4, 4, 5, 6, 6, 8, 9, 9, 10, 12, 12, 12, 14, 15, 16, 17, 18, 19, 20]

L’algorithme de tri utilisé est le « Timsort », du nom de son inventeur Tim Peters, en 2002. C’est un algorithme

performant, dérivé de I’algorithme du tri fusion que nous étudierons par la suite.

1-3) Type de tris
- Clefs : c’est ce qui est utilisé pour trier des éléments. Par exemple :

o On peut trier des mots a l'aide de leur premiere lettre. La clé est ainsi la premiere lettre.

Laurent Pietri ~1~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

o On peut trier des couples (4,5) (1,2) (1,3) (2,3) (3,1) selon leur premier terme, ce sera donc la clé, ou selon
leur deuxieme terme...
- Tri comparatif : tri fondé sur la comparaison entre les « clefs » des éléments pour les trier.
- Tri itératif : tri basé sur un ou plusieurs parcours itératifs de la liste a trier
- Tri récursif : Tri basé sur une méthode récursive
- Tri en place : Un tri est dit en place s'il modifie directement la structure qu’il est en train de trier. Il n’utilise pas
de liste auxiliaire.
- Tri stable : Tri qui conserve l'ordre initial des éléments de méme clef. Deux éléments avec des clefs égales

apparaitront dans le méme ordre dans la liste triée et non triée.

IT — Tris quadratiques
1I-1) Tri par sélection

a) Principe

On dispose de n données. On cherche la plus petite donnée et on la place en premiere position, puis on cherche la plus
petite donnée parmi les données restantes et on la place en deuxiéme position, et ainsi de suite...Si les données sont les
éléments d’une liste, 'algorithme consiste donc a faire varier un indice i de 0 a n—2.

Pour chaque valeur de i, on cherche dans la tranche liste[i:n] le plus petit élément et on ’échange avec liste[i]. On
répete la recherche d’un minimum.

L L’ L” L' L
7 7 7 7 8
3 3 3 8 7
8 8 8 3 3
1 2 2 2 2
2 1 1 1 1

def tri_selection(liste):
n=len(liste)
for i in range(@,n-1): #0n choisit un élement de La liste (on peut mettre n mais le dernier élément est déja trié)
i_mini=i #0n va stocker Le premier élément comme grandeur a comparer
for j in range(i+l,n): #Je compare L'élément choisi aux autres
if liste[j]<liste[i_mini]:
i_mini=j
liste[i],liste[i_mini]=liste[i_mini],liste[i] #si la donnée j est plus petite, on permute
return liste

LLL=tri_selection(L)
print(LLL)

b) Type de tri
Le tri par sélection est un tri comparatif, en place mais n’est pas stable.
- Tri comparatif : on compare les éléments de la liste (liste[j]<liste[i mini]).
- Tri itératif : on parcourt plusieurs fois la liste.
- Tri en place : on modifie la liste directement, on n’en crée pas d’autres.
- Tri non stable :
o Prenons la liste suivante [4,4*2,1].
o Pouriégal &0 : [1,4%24]
o Pouriégal al:[1,2,4*4]
o Pouriégale a 2 : [1,2,4* 4]
On remarque que la position des deux 4 a été inversée d’ou le tri non stable.

¢) Complexité
Pour chaque valeur de i, la seconde boucle effectue exactement n-i-1 comparaisons. Comme i varie de 0 a n-2, nous
n(n-1)

obtenons : (n —1) + (n — 2)+...+ 2 + 1 comparaisons, soit 5

comparaisons.

Laurent Pietri ~2~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

Le cofit est donc de 'ordre de n? quelle que soit la liste, méme si elle est déja triée. Cela signifie que le tri par sélection
n’est pas efficace. Il est cependant simple & programmer. L’algorithme de tri par sélection sur une liste de n éléments a un
colit quadratique en fonction de n. Le nombre de comparaisons est de ’ordre de n?.

Dans le pire des cas, le meilleur des cas et en moyenne :
C, (sélection)~ n?

[1-2) Tri par insertion

a) Principe

Le tri par insertion consiste a insérer les éléments d’une partie de la liste non triée dans la liste triée.

Pour chaque valeur de i, on cherche dans la liste liste [0:i + 1] a quelle place doit étre inséré 1'élément liste[i + 1]
qu’on appelle la clé. Pour cela on compare la clé successivement aux données précédentes, jusqu’ a trouver la bonne place,
c’est-a~dire entre deux données successives, I'une étant plus petite et 'autre plus grande que la clé. Pour ce faire, on décale
d’une place vers le haut les données plus grandes que la clé apres chaque comparaison. Voici un exemple illustré avec la

clé en orange :

L L L e 4 —|slels 187 24

7 7 7 7 4 —>1 8 7 2 4

3 3 3 8 4 —>8 7 2 4

8 8 8 3

1 2 2 2 ¢ T

5]] . a —|1]s]sls]7[8]2 4
4 —>M2|3|5|6|7|8|4
af = [1]2]s)4]s]el7]e]

D’ou 'algorithme suivant :

import random

n=10

L=[random.randint(1,1e8) for i in range(n)]
print(L)

def tri_insertion(liste):
n=len(liste)
for i in range(1,n):
cle=liste[i] #élement a tester dans la liste déja triée.
k=i-1 #0On va tester L'élément L[R] de la Liste déja triée.
while k>=0 and cle<liste[k]:#La condition k>=6@ empéche de rentrer dans une boucle infinie.
liste[k+1]=1liste[k] #0On fait remonter lLes éléments afin de préparer la place pour Lla clé.
k=k-1 #0n descend dans La partie de liste déja triée, et on teste L'élement suivant.
liste[k+1]=cle #Boucle finie, On insére la clé a la bonne position.
return liste

LLL=tri_insertion(L)
print(LLL)

[66, 87, 73, 81, 21, 13, 39, 46, 18, 36]
[13, 18, 21, 36, 39, 46, 66, 73, 81, 87]

b) Type de tri

Le tri par insertion est :

- Un tri par comparaison ;

- Un tri en place : on modifie la liste existante ;

- Un tri stable : deux éléments de méme valeur placés dans un certain ordre au départ restent dans le méme ordre
apres le tri.

¢) Terminaison
La suite des valeurs de « k » dans la boucle « while » est a valeurs enticres et strictement décroissante. Cette
boucle termine donc forcément grace a la condition k = 0.

Laurent Pietri ~3~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

d) Correction
On a pour invariant de boucle que « la liste formée des éléments de L d’indice inférieur a k est triée »

e) Complexité
Nous avons deux boucles imbriquées. Pour une liste de longueur n, le nombre de comparaisons peut étre différent
suivant la liste.
- Sila liste est déja triée, pour chaque valeur de i, k prend la valeur de i — 1 et il y a une seule comparaison, le test
clé < liste[k]. La variable i prenant n-1 valeurs, cela nous fait un total de n-1 comparaisons.
Dans le meilleur des cas, la complexité de ’algorithme est donc de I'ordre de n.
- Si par contre les éléments de la liste sont rangés dans 'ordre décroissant, alors pour chaque valeur de i, k prend
les valeurs de i-1 a 0 soit i valeurs et donc i comparaisons. Au total, nous avons donc : 1+ 2+...+(n —2) + (n —
1) comparaisons.
n—-1Dn-2) 5
—~n
2
Dans le pire des cas la complexité est donc de I'ordre de n? comparaisons.

=0, =

- On peut démontrer qu’en moyenne, le coilit est de 'ordre de n? comparaisons, comme pour le tri par sélection.
= Cy(insertion)~ n?

Le tri par insertion est tres intéressant si la liste est "presque triée”. Dans le pire des cas, et en moyenne, 1’algorithme
de tri par insertion sur une liste de n éléments a un coiit quadratique en fonction de n. Le nombre de comparaisons est de
lordre de n2.

11-3) Tri a bulles

Le tri a bulles consiste & comparer les deux premiers éléments d’une liste L et a les échanger s’ils ne sont pas triés
par ordre croissant. On recommence ensuite avec le deuxiéme et le troisieéme élément de la liste, et ainsi de suite...

Apres chaque parcours complet de la liste, on recommence 1’opération, ainsi les plus grands éléments remontent
de proche en proche vers la droite comme des bulles vers la surface.

Lorsqu’aucun échange a lieu pendant un parcours, cela signifie que la liste est triée et on arréte I'algorithme.

Mlustration sur la liste L = [5,1,4,2,8]

‘ 5 ‘ 1 ‘ 4 ‘ 2 ‘ 8 ‘ = ‘ 1 5 ‘ 4 ‘ 2 ‘ 8 ‘ e Les éléments 5 et 1 sont comparés puis inversés.
L5 4 ‘ 2|8)/=1 415128 e De méme pour 5 et 4
114 5 2|(8|=]1|4|2|5]|8 e De méme pour 5 et 2
1142 5|8 |=|1|4|2|5 8

e Par contre pour 5 et 8, cela reste inchangé.

1142 |5 8|=|1 42|58
114 2|58 |=|1 24|58 e On reparcourt le tableau et on inverse 4 et 2
11274 58 |=| 124158 o La liste est triée mais l'algorithme doit le vérifier
12|45/ 8 /=1 24|58 e D’ou un dernier test.

L’algorithme sera étudié en TD.

[II — Stratégie « diviser pour régner »
ITI-1) Tri fusion

a) Principe

Le tri par fusion consiste a réunir deux sous-listes triées en une seule liste. Il s’appuie sur la méthode <« diviser pour
régner ». On partage la liste initiale en deux sous-listes de longueurs quasi-égales que 'on trie de facon récursive. Il ne

reste plus qu’a fusionner ces deux sous-listes triées.

Laurent Pietri ~4 ~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

[y

1 6 1 7
6 5 | 6
5 ™l 5 >>§ 7 5
7 7] » 7] 5 1

=N W U U O[O

W LN [O | U1 [0V =

W N | O
\
N
e
Do
\
N
Njw || ©

D’ou l'algorithme suivant en deux parties :

- La fonction fusion :

Comme les deux listes : listel et liste2 sont déja triées, le premier élément de la fusion est le plus petit élément entre
liste1[0] et liste2[0] puis on passe a I’élément suivant de la liste qui a déja eu un élément trié et ainsi de suite jusqu’a

avoir vérifié les éléments des deux listes.

def fusion(listel, liste2):
liste_fus=[]
i,j = 0,0
while i<len(listel) and j<len(liste2):
if listel[i]<=1liste2[j]: #On compare les éléments des deux sous-listes triées
liste_fus.append(listel[i]) #On ajoute Le plus petit des élements a lLa Liste en train d'étre triee.
i=i+1 #On incrémente pour passer a L'élément suivant de la liste qui a <perdu> un élément
else:
liste fus.append(liste2[j]) #Sinon on fait de méme sur l'autre liste.
j:j+1
for k in range(i,len(listel)): #s’il reste des éléments dans Llistel
liste_fus.append(listel[k])
for k in range(j,len(liste2)): #s’il reste des éléments dans Liste2
liste_fus.append(liste2[k])
return liste fus

def fusion(listel, liste2):
liste_fus=[]
i,j = @,0
while i<len(listel) and j<len(liste2):
if listel[i]<=liste2[j]: #0On compare les é€léments des deux sous-listes triées
liste fus.append(listel[i]) #0On ajoute le plus petit des éléments a la liste en train d'étre triée.
i=i+1 #0On incrémente pour passer a L'élément suivant de la liste qui a <perdu> un élément
else:
liste_fus.append(liste2[j]) #Sinon on fait de méme sur L'autre liste.
j=j+1
return liste_fus+listel[i:]+liste2[]j:] #On peut aussi rajouter les éléments finaux de cette maniére

- La fonction tri-fusion :

Si la liste contient un seul élément, elle est déja triée : c’est la condition d’arrét de la fonction récursive. Sinon, on
partage la liste en deux sous-listes listel et liste2 que l'on trie récursivement en utilisant la fonction «tri-fusion». Il ne

reste plus qu’a fusionner les deux sous-listes triées.

def tri_fusion(liste):

if len(liste)<=1: #Notre condition d'arrét
return liste

else: #Ici c'est la partie division
milieu = len(liste)//2 #0On prépare notre découpe de maniére quasi-égale.
listel = tri_fusion(liste[:milieu]) #Récursivité, on découpe la liste en 2|parties (ici on prend les premiers éléments)
liste2 = tri_fusion(liste[milieu:]) #jusqu'a avoir un élément dans chaque liste (ici on prend les derniers éléments)

#que L'on trie/merge avec la fonction fusion
return fusion(listel, liste2) #Ici c'est la partie fusion

Laurent Pietri ~5~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

Puis on teste notre algorithme :

#0n teste notre algorithme

import random

n=10

L=[random.randint(1,100) for i in range(n)]
print(L)

a=tri_fusion(L)

print(a)

[1ee, 26, 99, 88, 49, 52, 46, 93, 11, 16]
[11, 16, 26, 46, 49, 52, 88, 93, 99, 1e0]

Voici, un exemple de fonctionnement de la fonction fusion sur deux listes triées :

Liste de départ 3546 21
Premiére exécution 354 6 21
Exécutions suivantes 3 5 4 6 21
Exécutions suivantes 3 5 4 6 2 1
Premiéres fusions 3 4 5 6 12
Fusions suivantes 345 126
Derniére fusion 123456

b) Type de tri

Le tri fusion est un :

- Tri récursif.

- Tri non en place : en effet il y a création de sous-listes.
- Tri stable.

¢) Complexité

Supposons que la taille du tableau initial est n = 2P oip = 1. On a donc une complexité C(n) tel que :
C(n) =2C (g) + Nrysion

Or ngygion égale a :

- 2% =1 fusion de 2* listes de taille 2n—1

- 2! fusions de 22 listes de taille Zn—z

2P

= 2P~ fusions de 2P listes de taille zlp :

_op
Ainsi Nypysion = 142+ 42071 == 2P —1~n

=C(n) =2C (g) +n

En effet il y a deux appels récursifs avec des tableaux de taille divisée par deux puis n fusions. D’ou :
c(n) 2 n c(2p) c@2r
T=—><c(—)+1<:> e

Cc(27P)
2p
. o . (2%
On reconnait une suite arithmétique de raison 1 avec uy = S0 = 1.
U, =ug+pxr=1+p
c@r)
= = 1+p)
:>C(27’)=(1+ p)xgﬁ

n

On pose u, = DUy =Up g+ 1

logzn

On suppose p grand :
=C(n) ~nlog,n
De manieére générale, le tri fusion d’une liste de taille n, a une complexité de l'ordre de nlog, n.

Laurent Pietri ~6~ Lycée Joffre - Montpellier

Cours : Informatique

V ~ Algorithmes de tri Informatique tronc commun : PCSI2

IT1-2) Tri rapide
a) Principe

Appelé quick sort en anglais, ce tri adopte lui aussi une démarche de type « diviser pour régner ».

Le tri rapide s’appuie sur la méthode « diviser pour régner > comme le tri par fusion.

- On choisit dans la liste arbitrairement un pivot p (souvent le premier ou dernier élément de la liste). On enléve le

pivot p de la liste.

- On segmente la liste en deux sous-listes, I'une contenant les éléments inférieurs ou égaux a p, Pautre les éléments

restants

strictement supérieurs a p.

On recommence récursivement avec les listes situées a gauche et a droite du pivot pour rassembler le tout.

a. Choix d’un pivot ’ ‘ p l ‘

b. Partitionnage | <p l p ‘ >p ‘

C. Appels récursifs ‘ tri ‘ p ‘ tri ‘

L’algorithme est aussi formé de deux fonctions principales :

- La fonction pivot :

La liste de nombres a trier est partagée en deux parties a 'aide d’une valeur choisie nommée le pivot. Une partie

contient les valeurs plus petites que le pivot et l'autre les valeurs plus grandes. Voici la méthode décrite par Anthony

Hoare en 1960 :
o
o

Finalement,

On choisit un élément de la liste qui est le pivot ;

On parcourt les éléments de la liste a I'aide deux indices appelés respectivement indice gauche et indice
droit, notés g et d ;

L’indice gauche commence a 1 et on se déplace vers la droite en I'augmentant d’une unité tant que ’on
rencontre des valeurs inférieures ou égales au pivot ;

L’indice droit commence & n et on se déplace vers la gauche en le diminuant d’'une unité tant que ’on
rencontre des valeurs supérieures ou égales au pivot limite ;

Les deux valeurs ou s’arrétent les indices g et d sont du mauvais c¢6té du pivot donc elles sont échangées
)

Chaque indice est incrémenté ou décrémenté d’une unité dans la direction respective de déplacement et
I’indice gauche recommence son déplacement ;

Ce processus est reproduit jusqu’a ce que les indices g et d se croisent ;

On place le pivot a la bonne place, par exemple en I’échangeant avec 1’élément d’indice d si le pivot qui a
été choisie est le premier élément de la liste.

la liste contient au début des éléments inférieurs ou égaux au pivot, puis le pivot, puis des éléments

supérieurs ou égaux au pivot. Le pivot est a la bonne place. On peut alors reproduire le processus sur la partie gauche et

sur la partie droite de la liste.

def pivot(liste
pivot=liste
g=debut+1
d=fin
while g<=d:
while g
g8=8
while d
d=d
if g <

g=8
d=d
liste[d], 1

liste[g], liste[d] = liste[d], liste[g] # On permute les deux valeurs mal positionnées

return d #0n garde la position du pivot pour la prochaine fonction

,debut,fin):
[debut] #0On choisit le pivot comme Lle premier terme de la Liste

#Tant que les deux 1indices ne se croisent pas

<=fin and liste[g] <= pivot: # On monte dans la liste

+1 # tant que Lliste[g]<pivot
>debut and liste[d]>=pivot: # On descend dans Lla Lliste
-1 # tant que liste[d]>pivot

d: #0n évite le croisement des valeurs

+1 # On continue pour les autres valeurs
=il
iste[debut]= liste[debut],liste[d] #On remet le pivot a sa bonne position

Laurent Pietri

~ 7~ Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri

Informatique tronc commun : PCSI2

- Fonction tri-rapide :

Le tri d’une liste est exécuté a ’aide d’appels récursifs sur les parties successivement déterminées par la fonction pivot.

Aucune nouvelle liste n’est créée. Les parties sont délimitées par les indices des extrémités. On peut définir une fonction

tri plus simple d’utilisation par la fonction Quicksort.

def tri_rapide(liste,g,d):
if g < d:
p = pivot(liste,g,d) #Dans L'indice p se trouve L'indice du pivot choisi.
tri_rapide(liste,g,p-1) #Tri récursif gauche
tri_rapide(liste,p+1,d) #Tri récursif droit

def quicksort(liste):
tri_rapide(liste,@,len(liste)-1) #0n veut avoir que L comme paramétre.
return(liste)

print(L)
print(quicksort(L))

[2, 4, 8, 9, 9, 6, 4, 3, 7, 1]
[1, 2, 3, 4, 4, 6, 7, 8, 9, 9]

E) E)

b) Type de tri
Le tri rapide est :

- Un tri récursif

- Un tri en place : pas de création de sous-listes. (Cependant il existe aussi des versions de tri rapide non en place)

- Un tri non stable. On tri directement la liste.

¢) Exemple
Voici un exemple ol en gris clair on représente la valeur « g » et en gris foncé la valeur « d ».

Le pivot étant marqué en gras.

cfsis o s M - On choisit 6 comme pivot
6 5 M8l 3 Il - 5 est bien placé (g=1), on monte d’un cran jusqu’a 8 (g=2). 4 est mal placé on
6 5 49 3 SN g’arréte (d=5).
6 5 4 98l - On inverse alors 4 et 8, on monte g (3) d’un cran et on descend d (4) d’un cran.
6 5 4 39l - TIls sont mal placés on inverse on monte g (4) et on descend d(3). La boucle
6 5 4 gELY s while principale s’arréte
, e o s - On replace le pivot a la place de d.

5

d) Exemple de tri rapide « non en place » (Hoare 1962)

L’idée consiste a partitionner d’abord le tableau t a trier autour d’un pivot : on choisit I'une des valeurs du tableau

(ledit pivot), par exemple L[0] et 'on construit deux tableaux avec les L[i] pour i > 0 :
o Le premier L1 avec les valeurs correspondant aux indices i tels que L[i]<pivot ;
o Le second L2 avec les valeurs correspondant aux indices i tels que L[i]2pivot.

Il n’y a plus qu’a trier récursivement L1 et L2 et a renvoyer les valeurs triées de L1, suivies de la valeur du pivot et

des valeurs triées de L2. On obtient ainsi les valeurs de L triées.

- Algorithme du tri rapide 2 :

def QS2(L):

if len(L)<=1: return L #Notre condition d'arrét de la récursivité

pivot=L[@] #Choix du pivot

L1,L2=[],[] #0On crée nos deux sous-listes vides

for i in L[1:]: #Le choix est Lié au fait qu'on a choisi le pivot au début :
if i<pivot: Ll.append(i) #0On crée la liste inférieure au pivot
else: L2.append(i) #Puis la supérieure

return QS2(L1)+[pivot]+QS2(L2) #Et La magie de la récursivité entraine notre Liste triée.

Lrej

L=[4,1,2,5,6,8,3]

print(L)
print(Qs2(L))

[4, 1, 2, 5, 6, 8, 3]
[e, 1, 2, 3, 4, 5, 6]

Laurent Pietri

Lycée Joffre - Montpellier

Cours : Informatique V ~ Algorithmes de tri Informatique tronc commun : PCSI2

e) Terminaison
L’algorithme se termine puisque les appels récursifs ont lieu pour arguments des listes de longueurs strictement plus
petites que len(L). La condition d’arrét sera remplie dans tous les cas en un temps fini lorsque la taille de la sous-liste

atteint la valeur 0 ou 1. Ceci assure la terminaison.

f) Correction
Une liste de taille 1 ou 0 est triée. Pour une liste de taille supérieure, la fonction partition positionne le pivot a la
bonne place, sa place définitive dans la liste triée. De plus les éléments de la sous liste de gauche sont tous inférieurs au

pivot et les éléments de la sous liste de droite sont tous supérieurs au pivot.

g) Complexité
i. Meilleur des cas

étape 0 | n |

étape 1 | n/2 | ni2 |

étape 2 | ni4 | ni4 [ni4 | ni4 |

étape
IRV K K KN KR KN KN KN EN KR ENENENENERERENENENENER

Dans le meilleur des cas on choisit le pivot au milieu de la liste et on se retrouve avec la méme complexité que le

tri fusion c’est-a-dire : C(n)~nlog, n
NB : Les « 1 » marquent le fait que ’élément est a la bonne place

ii. Pire des cas
Dauns le pire des cas, la partition donne une des listes L1 ou L2 vide et 'autre de longueur (n-1). Si c’est le cas a
chaque étape (liste initiale triée dans le mauvais sens) on a alors (n-1) fois la fonction pivot & appliquer qui est de

complexité linéaire, ce qui entraine une complexité quadratique :
C(n)~n?

iii. Bien choisir le pivot

Si la liste est déja triée, prendre comme pivot une extrémité n’est pas un bon choix, par conséquent on préfere le
prendre de fagon aléatoire ou la médiane de trois éléments.

En moyenne la complexité du tri rapide est du type : C(n)~nlog, n.

IV — Tri sans comparaison
IV-1) Tri par comptage

Les tris présentés utilisent des comparaisons. D’autres algorithmes peuvent utiliser la structure des données. C’est
le cas des tris par comptage, par base, par paquets. Le tri par comptage est présenté ici. On dispose d’une liste d’entiers
naturels qui sont tous inférieurs ou égaux a un entier naturel non nul m qui est de 'ordre de n, la taille de la liste.

On commence par écrire une fonction comptage, d’arguments une liste « entiers » et un entier « m », renvoyant
une liste de longueur m+1 telle pour tout k de 0 a m, I’élément d’indice k a pour valeur le nombre d’occurrences de l’entier

k dans la liste entiers.

IV-2) Algorithme
Les valeurs des éléments de la liste entiers sont représentées par les indices de la liste compteurs. On en déduit
une fonction tri, d’arguments une liste entiers et un entier m, renvoyant la liste triée dans ’ordre croissant.

Laurent Pietri ~9~ Lycée Joffre - Montpellier

V ~ Algorithmes de tri Informatique tronc commun : PCSI2

Cours : Informatique

def comptage(entiers, m):
compteurs = (m + 1) * [0]
for k in entiers:
compteurs[k] = compteurs[k] + 1 #On recherche le nombre d'occurences de k dans la liste
return compteurs

def tri(entiers, m):
cpts = comptage(entiers, m)
triee = []
for i in range(m+1):
triee = triee + cpts[i] * [i] #On ajoute 1l'occurence k le nombre de fois nécessaire...
return triee

import random

n=16

L=[random.randint(1,n) for i in range(n)]
print(tri(L,n))

[1, 2, 3, 5, 6, 6, 7, 8, 9, 9]

IV-3) Complexité

Le tri par comptage est réservé dans notre cas a un tri d’entiers cependant sa complexité est faible. On a deux
boucles non imbriquées de longueur n a peu prés.

Donc la complexité est : € =n+m~n. Cest une bonne complexité pour les entiers mais cela peut devenir

beaucoup plus important pour d’autres systemes de nombres.

V- Conclusion sur les complexités

Meilleur des cas Pire des cas En moyenne
Tri par sélection C(n) ~n? C(n) ~n? C(n) ~n?
Tri par insertion C(n) ~n C(n) ~n? C(n) ~n?
Tri & bulles C(n)~n C(n) ~n? C(m)~n®

Tri fusion C(n) ~nlog;n C(n) ~nlog;n C(n) ~nlog;n
Tri rapide C(n) ~nlog;n C(n)~n? C(n) ~nlog;n
Laurent Pietri ~10 ~ Lycée Joffre - Montpellier

