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IF5 – Algorithmes de tri 
 

L’objectif de ce chapitre est de mettre en place des algorithmes qui réalisent un tri ordonné d’une liste aléatoire. 
Nous allons voir dans un premier temps des tris par comparaison puis des tris par comptage. 

Evidemment, un algorithme de tri est efficace si, lorsqu’il retourne la liste triée, il a effectué ce tri en un temps le 
plus court possible. Le caractère aléatoire de la liste à trier va nous conduire à discuter des complexités dans le meilleur et 
le pire des cas. 

 
 
 
 
 
 
 

 

I – Introduction 
I-1) Contexte 

On considère des données numériques. Trier ces données consiste à les ranger en ordre croissant ou décroissant. 
Une opération de tri consomme un temps de calcul important sur un ordinateur et il donc nécessaire d’étudier la complexité 
temporelle des différents algorithmes de tri. On peut évaluer cette complexité dans le "pire des cas", ou dans le "meilleur 
des cas" ou enfin "en moyenne" et ensuite utiliser l’algorithme qui convient le mieux suivant la situation. 

Les algorithmes étudiés, dans un premier temps, sont basés sur des comparaisons successives entre les données et 
éventuellement une permutation des éléments comparés. Le nombre de permutations est toujours inférieur au nombre de 
comparaisons. Ainsi la complexité d’un algorithme est du même ordre de grandeur que le nombre de comparaisons effectuées 
par cet algorithme. 

 Il y a 𝑛𝑛! manières de ranger n données (𝑛𝑛! permutations). La première comparaison concerne deux des données a 
et b de la liste et consiste à poser la question : a<b ? La réponse permet de diviser les 𝑛𝑛! manières en deux parties égales. 
Donc après k comparaisons, il restera 𝑛𝑛!

2𝑘𝑘
 permutations à envisager. Le tri sera terminé lorsqu’il ne restera plus qu’une 

permutation, soit si : 
𝑛𝑛!
2𝑘𝑘

≤ 1 ⇒ 2𝑘𝑘 ≥ 𝑛𝑛!  ⇒ 𝑘𝑘𝑘𝑘𝑘𝑘(2) ≥ ln(𝑛𝑛!) 

Dès que n est grand on peut utiliser la formule de Stirling : 
ln(𝑛𝑛!) ~ 𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛) 

⇒ 𝑘𝑘 ≳
𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)
ln(2)  

Conclusion : Le minimum de comparaisons est donc de l’ordre de 𝑛𝑛 𝑙𝑙𝑙𝑙𝑔𝑔2(𝑛𝑛). 
 
I-2) Fonctions natives de python 
 Introduisons deux fonctions que python propose nativement « .sort » et « sorted(L) ». Par exemple : 

 
L’algorithme de tri utilisé est le « Timsort », du nom de son inventeur Tim Peters, en 2002. C’est un algorithme 

performant, dérivé de l’algorithme du tri fusion que nous étudierons par la suite. 
 
I-3) Type de tris 

- Clefs : c’est ce qui est utilisé pour trier des éléments. Par exemple : 
o On peut trier des mots à l’aide de leur première lettre. La clé est ainsi la première lettre. 

Objectifs : 
- Être capable de programmer des tris par sélection, par insertion, par fusion ou « rapides ». 
- Retenir le coût des différents tris. 
- Reconnaître un tri par comptage et estimer son coût. 
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o On peut trier des couples (4,5) (1,2) (1,3) (2,3) (3,1) selon leur premier terme, ce sera donc la clé, ou selon 
leur deuxième terme… 

- Tri comparatif : tri fondé sur la comparaison entre les « clefs » des éléments pour les trier. 
- Tri itératif : tri basé sur un ou plusieurs parcours itératifs de la liste à trier 
- Tri récursif : Tri basé sur une méthode récursive 
- Tri en place : Un tri est dit en place s'il modifie directement la structure qu’il est en train de trier. Il n’utilise pas 

de liste auxiliaire. 
- Tri stable : Tri qui conserve l’ordre initial des éléments de même clef. Deux éléments avec des clefs égales 

apparaîtront dans le même ordre dans la liste triée et non triée. 

II – Tris quadratiques 
II-1) Tri par sélection 

a) Principe 
On dispose de n données. On cherche la plus petite donnée et on la place en première position, puis on cherche la plus 

petite donnée parmi les données restantes et on la place en deuxième position, et ainsi de suite...Si les données sont les 
éléments d’une liste, l’algorithme consiste donc à faire varier un indice i de 0 à n−2. 

Pour chaque valeur de i, on cherche dans la tranche liste[i:n] le plus petit  élément et on l’échange avec liste[i]. On 
répète la recherche d’un minimum. 

 
L L’ L’’ L’’’ L’’’’ 
7 7 7 7 8 
3 3 3 8 7 
8 8 8 3 3 
1 2 2 2 2 
2 1 1 1 1 

 

 

 
b) Type de tri 
Le tri par sélection est un tri comparatif, en place mais n’est pas stable. 
- Tri comparatif : on compare les éléments de la liste (liste[j]<liste[i_mini]). 
- Tri itératif : on parcourt plusieurs fois la liste. 
- Tri en place : on modifie la liste directement, on n’en crée pas d’autres. 
- Tri non stable : 

o Prenons la liste suivante [4,4*,2,1]. 
o Pour i égal à 0 : [1,4*,2,4] 
o Pour i égal à 1 : [1,2,4*,4] 
o Pour i égale à 2 : [1,2,4*,4] 

On remarque que la position des deux 4 a été inversée d’où le tri non stable. 
 

c) Complexité 
Pour chaque valeur de i, la seconde boucle effectue exactement n-i-1 comparaisons. Comme i varie de 0 à n-2, nous 

obtenons : (𝑛𝑛 − 1) + (𝑛𝑛 − 2)+. . . + 2 + 1 comparaisons, soit 𝑛𝑛(𝑛𝑛−1)
2

 comparaisons. 
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Le coût est donc de l’ordre de n² quelle que soit la liste, même si elle est déjà triée.  Cela signifie que le tri par sélection 
n’est pas efficace. Il est cependant simple à programmer.  L’algorithme de tri par sélection sur une liste de n éléments a un 
coût quadratique en fonction de n. Le nombre de comparaisons est de l’ordre de n². 
Dans le pire des cas, le meilleur des cas et en moyenne : 

𝐶𝐶𝑛𝑛(𝑠𝑠é𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)~ 𝑛𝑛2 
 

II-2) Tri par insertion 
a) Principe 
Le tri par insertion consiste à insérer les éléments d’une partie de la liste non triée dans la liste triée. 
Pour chaque valeur de i, on cherche dans la liste liste [0: 𝑖𝑖 + 1] à quelle place doit être inséré l’élément 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖 + 1] 

qu’on appelle la clé. Pour cela on compare la clé successivement aux données précédentes, jusqu’ à trouver la bonne place, 
c’est-à-dire entre deux données successives, l’une étant plus petite et l’autre plus grande que la clé. Pour ce faire, on décale 
d’une place vers le haut les données plus grandes que la clé après chaque comparaison. Voici un exemple illustré avec la 
clé en orange : 

 

 
 
D’où l’algorithme suivant : 

 
 

b) Type de tri 
Le tri par insertion est : 
- Un tri par comparaison ; 
- Un tri en place : on modifie la liste existante ; 
- Un tri stable : deux éléments de même valeur placés dans un certain ordre au départ restent dans le même ordre 

après le tri. 
 
c) Terminaison 

La suite des valeurs de « k » dans la boucle « while » est à valeurs entières et strictement décroissante. Cette 
boucle termine donc forcément grâce à la condition 𝑘𝑘 ≥ 0. 

L L’ L’’ L’’ 
7 7 7 7 
3 3 3 8 
8 8 8 3 
1 2 2 2 
2 1 1 1 
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d) Correction 
On a pour invariant de boucle que « la liste formée des éléments de L d’indice inférieur à k est triée » 
 

e) Complexité 
Nous avons deux boucles imbriquées. Pour une liste de longueur n, le nombre de comparaisons peut être différent 

suivant la liste. 
- Si la liste est déjà triée, pour chaque valeur de i, k prend la valeur de 𝑖𝑖 − 1 et il y a une seule comparaison, le test 

𝑐𝑐𝑐𝑐é < 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑘𝑘]. La variable i prenant n-1 valeurs, cela nous fait un total de n-1 comparaisons. 
Dans le meilleur des cas, la complexité de l’algorithme est donc de l’ordre de n. 
- Si par contre les éléments de la liste sont rangés dans l’ordre décroissant, alors pour chaque valeur de i, k prend 

les valeurs de i-1 à 0 soit i valeurs et donc i comparaisons. Au total, nous avons donc : 1 + 2+. . . +(𝑛𝑛 − 2) + (𝑛𝑛 −
1) comparaisons. 

⇒ 𝐶𝐶𝑛𝑛 =
(𝑛𝑛 − 1)(𝑛𝑛 − 2)

2
 ~ 𝑛𝑛2 

Dans le pire des cas la complexité est donc de l’ordre de n² comparaisons. 
 
- On peut démontrer qu’en moyenne, le coût est de l’ordre de n² comparaisons, comme pour le tri par sélection. 

⇒ 𝐶𝐶𝑛𝑛(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)~ 𝑛𝑛2 
 

Le tri par insertion est très intéressant si la liste est ”presque triée”.  Dans le pire des cas, et en moyenne, l’algorithme 
de tri par insertion sur une liste de n éléments a un coût quadratique en fonction de n. Le nombre de comparaisons est de 
l’ordre de n².  
 
II-3) Tri à bulles 

Le tri a bulles consiste à comparer les deux premiers éléments d’une liste L et à les échanger s’ils ne sont pas triés 
par ordre croissant. On recommence ensuite avec le deuxième et le troisième élément de la liste, et ainsi de suite… 

Après chaque parcours complet de la liste, on recommence l’opération, ainsi les plus grands éléments remontent 
de proche en proche vers la droite comme des bulles vers la surface. 

Lorsqu’aucun échange a lieu pendant un parcours, cela signifie que la liste est triée et on arrête l’algorithme. 
Illustration sur la liste 𝐿𝐿 = [5,1,4,2,8] 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
L’algorithme sera étudié en TD. 
 

III – Stratégie « diviser pour régner » 
III-1) Tri fusion 

a) Principe 
Le tri par fusion consiste à réunir deux sous-listes triées en une seule liste. Il s’appuie sur la méthode ≪ diviser pour 

régner ≫. On partage la liste initiale en deux sous-listes de longueurs quasi-égales que l’on trie de façon récursive. Il ne 
reste plus qu’à fusionner ces deux sous-listes triées. 

• Les éléments 5 et 1 sont comparés puis inversés. 
 

• De même pour 5 et 4 
• De même pour 5 et 2 

 
• Par contre pour 5 et 8, cela reste inchangé. 

 
• On reparcourt le tableau et on inverse 4 et 2 

 

• La liste est triée mais l’algorithme doit le vérifier 
 

• D’où un dernier test. 
 

 



Cours : Informatique V ∼ Algorithmes de tri Informatique tronc commun : PCSI2 

Laurent Pietri  ~ 5 ~ Lycée Joffre - Montpellier 

 
D’où l’algorithme suivant en deux parties : 

- La fonction fusion : 
Comme les deux listes : liste1 et liste2 sont déjà triées, le premier élément de la fusion est le plus petit élément entre 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1[0] et 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2[0] puis on passe à l’élément suivant de la liste qui a déjà eu un élément trié et ainsi de suite jusqu’à 
avoir vérifié les éléments des deux listes. 
 

 
Ou :

 
 

- La fonction tri-fusion : 
Si la liste contient un seul élément, elle est déjà triée : c’est la condition d’arrêt de la fonction récursive. Sinon, on 

partage la liste en deux sous-listes liste1 et liste2 que l’on trie récursivement en utilisant la fonction «tri-fusion». Il ne 
reste plus qu’à fusionner les deux sous-listes triées. 

 
 
 
 



Cours : Informatique V ∼ Algorithmes de tri Informatique tronc commun : PCSI2 

Laurent Pietri  ~ 6 ~ Lycée Joffre - Montpellier 

Puis on teste notre algorithme : 

 
 
Voici, un exemple de fonctionnement de la fonction fusion sur deux listes triées : 

 
 

b) Type de tri 
Le tri fusion est un : 
- Tri récursif. 
- Tri non en place : en effet il y a création de sous-listes. 
- Tri stable. 

 
c) Complexité 
Supposons que la taille du tableau initial est 𝑛𝑛 = 2𝑝𝑝 𝑜𝑜ù 𝑝𝑝 ≥ 1. On a donc une complexité 𝐶𝐶(𝑛𝑛) tel que : 

𝐶𝐶(𝑛𝑛) = 2𝐶𝐶 �
𝑛𝑛
2
� + 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Or 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  égale à : 
- 20 = 1 fusion de 21 listes de taille 𝑛𝑛

21
. 

- 21 fusions de 22 listes de taille 𝑛𝑛
22

. 

- 2𝑝𝑝

2
= 2𝑝𝑝−1 fusions de 2𝑝𝑝 listes de taille 𝑛𝑛

2𝑝𝑝
 . 

Ainsi 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 + 2 + ⋯+ 2𝑝𝑝−1 = 1−2𝑝𝑝

1−2
= 2𝑝𝑝 − 1~𝑛𝑛 

⇒ 𝐶𝐶(𝑛𝑛) = 2𝐶𝐶 �
𝑛𝑛
2
� + 𝑛𝑛 

 
En effet il y a deux appels récursifs avec des tableaux de taille divisée par deux puis n fusions. D’où : 

𝐶𝐶(𝑛𝑛)
𝑛𝑛

=
2
𝑛𝑛

× 𝐶𝐶 �
𝑛𝑛
2
� + 1⇔ 

𝐶𝐶(2𝑝𝑝)
2𝑝𝑝

=
𝐶𝐶(2𝑝𝑝−1)

2𝑝𝑝−1
+ 1 

𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑝𝑝 =
𝐶𝐶(2𝑝𝑝)

2𝑝𝑝
 ⇒ 𝑢𝑢𝑝𝑝 = 𝑢𝑢𝑝𝑝−1 + 1 

On reconnaît une suite arithmétique de raison 1 avec 𝑢𝑢0 = 𝐶𝐶�20�
20

= 1. 
⇒ 𝑢𝑢𝑝𝑝 = 𝑢𝑢0 + 𝑝𝑝 × 𝑟𝑟 = 1 + 𝑝𝑝 

⇒ 
𝐶𝐶(2𝑝𝑝)

2𝑝𝑝
= (1 + 𝑝𝑝) 

⇒ 𝐶𝐶(2𝑝𝑝) = �1 + 𝑝𝑝⏟
log2 𝑛𝑛

� × 2𝑝𝑝�
𝑛𝑛

 

On suppose p grand : 
⇒ 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 

De manière générale, le tri fusion d’une liste de taille n, a une complexité de l’ordre de 𝑛𝑛 log2 𝑛𝑛. 
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III-2) Tri rapide 
a) Principe 
Appelé quick sort en anglais, ce tri adopte lui aussi une démarche de type « diviser pour régner ». 
Le tri rapide s’appuie sur la méthode ≪ diviser pour régner ≫ comme le tri par fusion. 
- On choisit dans la liste arbitrairement un pivot p (souvent le premier ou dernier élément de la liste). On enlève le 

pivot p de la liste. 
- On segmente la liste en deux sous-listes, l’une contenant les éléments inférieurs ou égaux à p, l’autre les éléments 

restants strictement supérieurs à p. 
On recommence récursivement avec les listes situées à gauche et à droite du pivot pour rassembler le tout. 
 
a. Choix d’un pivot 

 
b. Partitionnage 

 
c. Appels récursifs 
 
L’algorithme est aussi formé de deux fonctions principales : 
- La fonction pivot : 
La liste de nombres à trier est partagée en deux parties à l’aide d’une valeur choisie nommée le pivot. Une partie 

contient les valeurs plus petites que le pivot et l’autre les valeurs plus grandes.  Voici la méthode décrite par Anthony 
Hoare en 1960 : 

o On choisit un élément de la liste qui est le pivot ; 
o On parcourt les éléments de la liste à l’aide deux indices appelés respectivement indice gauche et indice 

droit, notés g et d ; 
o L’indice gauche commence à 1 et on se déplace vers la droite en l’augmentant d’une unité tant que l’on 

rencontre des valeurs inférieures ou égales au pivot ; 
o L’indice droit commence à n et on se déplace vers la gauche en le diminuant d’une unité tant que l’on 

rencontre des valeurs supérieures ou égales au pivot limite ; 
o Les deux valeurs où s’arrêtent les indices g et d sont du mauvais côté du pivot donc elles sont échangées 

; 
o Chaque indice est incrémenté ou décrémenté d’une unité dans la direction respective de déplacement et 

l’indice gauche recommence son déplacement ; 
o Ce processus est reproduit jusqu’à ce que les indices g et d se croisent ; 
o On place le pivot à la bonne place, par exemple en l’échangeant avec l’élément d’indice d si le pivot qui a 

été choisie est le premier élément de la liste. 
Finalement, la liste contient au début des éléments inférieurs ou égaux au pivot, puis le pivot, puis des éléments 

supérieurs ou égaux au pivot. Le pivot est à la bonne place. On peut alors reproduire le processus sur la partie gauche et 
sur la partie droite de la liste. 
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- Fonction tri-rapide : 
Le tri d’une liste est exécuté à l’aide d’appels récursifs sur les parties successivement déterminées par la fonction pivot. 

Aucune nouvelle liste n’est créée. Les parties sont délimitées par les indices des extrémités. On peut définir une fonction 
tri plus simple d’utilisation par la fonction Quicksort. 

 

 
 
b) Type de tri 

Le tri rapide est : 
- Un tri récursif 
- Un tri en place : pas de création de sous-listes. (Cependant il existe aussi des versions de tri rapide non en place) 
- Un tri non stable. On tri directement la liste. 

 
c) Exemple 
Voici un exemple où en gris clair on représente la valeur « g » et en gris foncé la valeur « d ». 
Le pivot étant marqué en gras. 

 
d) Exemple de tri rapide « non en place » (Hoare 1962) 
L’idée consiste à partitionner d’abord le tableau t à trier autour d’un pivot : on choisit l’une des valeurs du tableau 

(ledit pivot), par exemple L[0] et l’on construit deux tableaux avec les L[i] pour i > 0 : 
o Le premier L1 avec les valeurs correspondant aux indices i tels que L[i]<pivot ; 
o Le second L2 avec les valeurs correspondant aux indices i tels que L[i]≥pivot. 

Il n’y a plus qu’à trier récursivement L1 et L2 et à renvoyer les valeurs triées de L1, suivies de la valeur du pivot et 
des valeurs triées de L2. On obtient ainsi les valeurs de L triées. 

 
- Algorithme du tri rapide 2 : 

 

- On choisit 6 comme pivot 
- 5 est bien placé (g=1), on monte d’un cran jusqu’à 8 (g=2). 4 est mal placé on 

s’arrête (d=5). 
- On inverse alors 4 et 8, on monte g (3) d’un cran et on descend d (4) d’un cran. 
- Ils sont mal placés on inverse on monte g (4) et on descend d(3). La boucle 

while principale s’arrête 
- On replace le pivot à la place de d. 
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e) Terminaison 
L’algorithme se termine puisque les appels récursifs ont lieu pour arguments des listes de longueurs strictement plus 

petites que len(L). La condition d’arrêt sera remplie dans tous les cas en un temps fini lorsque la taille de la sous-liste 
atteint la valeur 0 ou 1. Ceci assure la terminaison. 

 
f) Correction 
Une liste de taille 1 ou 0 est triée. Pour une liste de taille supérieure, la fonction partition positionne le pivot à la 

bonne place, sa place définitive dans la liste triée. De plus les éléments de la sous liste de gauche sont tous inférieurs au 
pivot et les éléments de la sous liste de droite sont tous supérieurs au pivot. 

 
g) Complexité 
i. Meilleur des cas 

 
Dans le meilleur des cas on choisit le pivot au milieu de la liste et on se retrouve avec la même complexité que le 

tri fusion c’est-à-dire : 𝐶𝐶(𝑛𝑛)~𝑛𝑛 log2 𝑛𝑛 
NB : Les « 1 » marquent le fait que l’élément est à la bonne place 
 

ii. Pire des cas 
Dans le pire des cas, la partition donne une des listes L1 ou L2 vide et l’autre de longueur (n-1). Si c’est le cas à 

chaque étape (liste initiale triée dans le mauvais sens) on a alors (n-1) fois la fonction pivot à appliquer qui est de 
complexité linéaire, ce qui entraîne une complexité quadratique : 

𝐶𝐶(𝑛𝑛)~𝑛𝑛2 
 

iii. Bien choisir le pivot 
Si la liste est déjà triée, prendre comme pivot une extrémité n’est pas un bon choix, par conséquent on préfère le 

prendre de façon aléatoire ou la médiane de trois éléments. 
En moyenne la complexité du tri rapide est du type : 𝐶𝐶(𝑛𝑛)~𝑛𝑛 log2 𝑛𝑛. 

 
IV – Tri sans comparaison 
IV-1) Tri par comptage 

Les tris présentés utilisent des comparaisons. D’autres algorithmes peuvent utiliser la structure des données. C’est 
le cas des tris par comptage, par base, par paquets. Le tri par comptage est présenté ici.  On dispose d’une liste d’entiers 
naturels qui sont tous inférieurs ou égaux à un entier naturel non nul m qui est de l’ordre de n, la taille de la liste. 

On commence par écrire une fonction comptage, d’arguments une liste « entiers » et un entier « m », renvoyant 
une liste de longueur m+1 telle pour tout k de 0 a m, l’élément d’indice k a pour valeur le nombre d’occurrences de l’entier 
k dans la liste entiers. 

 
IV-2) Algorithme 
 Les valeurs des éléments de la liste entiers sont représentées par les indices de la liste compteurs.  On en déduit 
une fonction tri, d’arguments une liste entiers et un entier m, renvoyant la liste triée dans l’ordre croissant. 
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IV-3) Complexité 
Le tri par comptage est réservé dans notre cas à un tri d’entiers cependant sa complexité est faible. On a deux 

boucles non imbriquées de longueur n à peu prés. 
Donc la complexité est : 𝐶𝐶 = 𝑛𝑛 + 𝑚𝑚 ~ 𝑛𝑛. C’est une bonne complexité pour les entiers mais cela peut devenir 

beaucoup plus important pour d’autres systèmes de nombres. 
 
V- Conclusion sur les complexités 
 
 Meilleur des cas Pire des cas En moyenne 
Tri par sélection 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 
Tri par insertion 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 
Tri à bulles 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛2 𝐶𝐶(𝑛𝑛)~𝑛𝑛2 
Tri fusion 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 
Tri rapide 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 𝐶𝐶(𝑛𝑛)~𝑛𝑛2 𝐶𝐶(𝑛𝑛) ~ 𝑛𝑛 log2 𝑛𝑛 

 


