
Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 1 ~ Lycée Joffre - Montpellier

IF4 – Ecriture et analyse d’un programme

Lors des tout débuts de l’informatique, dans l’immédiat après-guerre, on travaillait directement en langage machine

ce qui demandait une connaissance technique très spécifique. Le besoin s’est fait sentir de faciliter la tâche du programmeur
en créant un langage intermédiaire. Arrivé à IBM en 1950, John Backus est confronté à la difficulté de noter les nombres.
Il élabore la syntaxe et le fonctionnement d’un langage intermédiaire entre le programmeur et la machine et conçoit le
Fortran. De très nombreux langages suivirent très rapidement

I – Instructions et spécifications
I-1) Instructions

Une instruction est un morceau de code minimal qui produit un effet. Une instruction est exécutée par une machine.
Une instruction simple peut s’écrire sur une seule ligne. On peut en écrire plusieurs séparées par des points-virgules. Outre
l’expression et l’affectation, quelques instructions simples sont :

• Affirmer avec assert, qui est suivi d’une expression, (les assertions sont précisées plus loin dans ce chapitre) ;
• Renvoyer avec return, qui est suivi d’une expression et s’emploie uniquement dans une fonction ;
• Arrêter avec break, mot isolé qui permet d’arrêter une boucle ;
• Importer avec import, suivi d’un nom de module, ou de fonction, appartenant à un module qui est précisé.

Une instruction composée est une instruction sur une ligne terminée par deux-points suivie d’une ou plusieurs

instructions indentées : on dispose par exemple de :
• if qui peut être suivi de elif, de else pour exécuter des instructions selon une condition ;
• for et de while pour exécuter des instructions de manière répétée ;
• def pour définir une fonction.

I-2) Spécifications

II – Annotation
II-1) Spécification d’une fonction

 La spécification est destinée à l’utilisateur. Elle n’est pas utilisée par l’interpréteur « Python ». On la représente
par à l’aide de « docstrings » identifiés par des triples guillemets. Si on souhaite obtenir des informations de l’interpréteur,
on utilisera la fonction help.

La spécification d’une fonction est écrite, comme l’est un commentaire dans un programme, à l’attention des

utilisateurs qui ont besoin de savoir comment l’utiliser. L’objectif est de les éclairer, de les aider à saisir rapidement le rôle
d’une ou plusieurs instructions. Un choix pertinent dans les noms de variables et de fonctions participe aussi à la
compréhension d’un code. Voici comment définir une fonction avec sa spécification et quelques annotations (représentées
ici par #) :

Objectifs :
- Concevoir des assertions pour vérifier certaines conditions.
- Savoir prouver la terminaison et la correction d’un algorithme.
- Acquérir des compétences sur la notion de complexité.

Une spécification permet d’informer les utilisateurs de la tâche effectuée par la fonction, de préciser les
contraintes imposées pour les paramètres et ce qui peut être attendu des résultats. Elle peut aussi préciser les
messages d’erreurs affichés en cas de mauvaise utilisation.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 2 ~ Lycée Joffre - Montpellier

Il faut bien comprendre qu’une spécification est une sorte de contrat entre l’utilisateur et l’auteur du code. L’auteur

garantit un résultat sous réserve d’une utilisation correcte précisée par la spécification.

II – Annotations, assertions et tests
II-1) Annotations et commentaires

Un programme doit pouvoir être lu et relu facilement par l’auteur mais aussi par quelqu’un qui découvre le
programme. Il est important pour cela d’annoter certaines lignes de code ou des blocs d’instructions afin de préciser leur
rôle. On utilise pour cela un commentaire qui est une ligne de texte précédée du symbole #.

Comme c’est le cas pour une spécification, un commentaire n’est pas utilisé par l’interpréteur Python. Un choix
de structure ou de méthode par exemple peut aussi être précisé et expliqué à l’aide de commentaires.

II-2) Assertion

Une spécification permet d’éclairer sur les données en entrées, le type des valeurs autorisées, la plage de valeurs
acceptées. On peut ajouter des instructions qui vont arrêter le programme en cas de mauvaises utilisation. Une assertion
est l’affirmation qu’une propriété est vraie. Elle est composée du mot assert suivi d’une expression dont la valeur est
interprétée comme une valeur booléenne. Si l’expression a la valeur True il ne se passe rien, sinon le programme est
interrompu et un message d’erreur s’affiche AssertionError. Voici un exemple simple :

Dans cet autre exemple, on vérifie que k est bien une clé présente dans le dictionnaire.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 3 ~ Lycée Joffre - Montpellier

II-3) Tests
Pour s’assurer qu’un programme fonctionne, il faut le tester, soit dans son ensemble (test système), soit morceau

par morceau (test unitaire).
Pour effectuer ces tests, on peut utiliser la méthode « assert » et il faut définir un certain nombre de cas dont on connaît
la réponse et vérifier que l’exécution produit bien le résultat attendu.

Tester un programme est une condition nécessaire au bon fonctionnement du code mais pas suffisante. Ce n’est
pas parce que tous les tests ont réussi qu’il n’y a pas de bug, en revanche si un des tests échoue, on sait qu’il y en a au
moins un ;-)

Revenons sur l’exemple de la fonction « permute » :

 On remarque ainsi qu’on avait pas prévu le cas de la liste vide il nous faudra donc modifier notre programme en
tenant compte de ce cas ou le spécifier.

III – Terminaison et Correction
III-1) Introduction

Lorsqu’on écrit un algorithme, il est impératif de vérifier que cet algorithme produit un résultat après un nombre
fini d’étapes et que ce résultat est correct dans le sens où il est conforme à la spécification précisée.

Un algorithme itératif est construit avec des boucles. Le nombre de passages dans une boucle doit être fini. (Si
l’algorithme est récursif, le nombre d’appels récursifs doit être fini) Deux conditions sont donc à vérifier :

- L’algorithme donne une réponse, c’est l’étude de la terminaison ;
- La réponse donnée est celle attendue, c’est l’étude de la correction.

Si les deux conditions sont satisfaites, nous disons que l’algorithme est valide.
Lorsqu’il se termine, l’algorithme donne la réponse attendue on parle de correction partielle. Si la terminaison est

assurée dans tous les cas et que la réponse est correcte, on parle de correction totale.
Pour prouver la terminaison d’un algorithme itératif, nous disposons de la notion de variant de boucle. Pour

prouver qu’un algorithme itératif est correct, nous disposons de la notion d’invariant de boucle.

III-2) Variant de boucle

Dans la plupart des cas, on utilise une (ou des variables) qui va permettre de démontrer que la boucle s’arrête
(variant de boucle) et que le programme est correct (invariant de boucle)
Le variant de boucle est une expression dont les valeurs prises au cours des itérations constituent une suite convergente
en un nombre fini d’étapes vers une valeur satisfaisant la condition d’arrêt tout au long de la boucle, en général c’est une
variable :

- À valeurs entières ;
- Toujours positive en entrée de boucle ;
- Et, qui diminue (ou augmente) strictement après chaque itération sans dépasser une valeur choisie.

On peut alors en conclure que la boucle se termine.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 4 ~ Lycée Joffre - Montpellier

Dans notre exemple la variable r :

- Reste positive tout au long de l’algorithme.
- Diminue à chaque itération.
- Décroit jusqu’à la valeur de 1 > 0.

Ainsi la variable r joue le rôle de variant de boucle : le programme se termine.

III-3) Invariant de boucle

Un invariant de boucle est une propriété :
- Qui est vérifiée avant d’entrer dans la boucle,
- Qui si elle est vérifiée avant une itération est vérifiée après celle-ci,
- Qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que le programme est correct.
La démonstration se fait par récurrence, convenablement rédigée : initialisation, hérédité, conclusion.

Sur cet exemple, « m » joue le rôle de variant de boucle :

- C’est un entier positif
- Qui croît jusqu’à une valeur limite « a ».

Le programme se termine bien.

Montrons que la quantité 𝑝𝑝 = 𝑚𝑚 × 𝑏𝑏 est un invariant de boucle.
• Initialisation

𝑚𝑚 = 0, 𝑝𝑝 = 0 ⇒ 𝑝𝑝 = 𝑚𝑚 × 𝑏𝑏 𝑣𝑣é𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟é𝑒𝑒 au rang 0.
• Hérédité

Supposons que 𝑝𝑝 = 𝑚𝑚 × 𝑏𝑏 𝑣𝑣é𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟é𝑒𝑒 alors au tour suivant :
𝑚𝑚′ = 𝑚𝑚 + 1 𝑒𝑒𝑒𝑒 𝑝𝑝′ = 𝑝𝑝 + 𝑏𝑏 𝑑𝑑′𝑜𝑜ù ∶

𝑝𝑝′ = (𝑚𝑚 + 1) × 𝑏𝑏 = 𝑚𝑚 × 𝑏𝑏 + 𝑏𝑏 = (𝑚𝑚 + 1)𝑏𝑏 = 𝑚𝑚′ × 𝑏𝑏
• Conclusion

La propriété est donc vraie au rang 𝑚𝑚 + 1. 𝑝𝑝 = 𝑚𝑚 × 𝑏𝑏 est bien un invariant de boucle. À la fin du programme on
aura : 𝑝𝑝 = 𝑎𝑎 × 𝑏𝑏. La correction est vérifiée.

IV – Complexité
IV-1) Définitions
 Lorsqu’un algorithme est correct, il doit encore, avant d’être écrit et exécuté, satisfaire à deux impératifs en termes
de consommation de ressources :

- Utiliser un espace en mémoire acceptable, on parle de complexité en espace ;
- Produire la réponse attendue en un temps acceptable, on parle de complexité temporelle.

Si le programme se termine (variant de boucle) et qu’il donne le bon résultat (invariant de boucle) on dit
qu’il y a : correction totale.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 5 ~ Lycée Joffre - Montpellier

Il existe une règle pratique qui s’observe fréquemment : pour une même tâche, on peut souvent :
- Optimiser la complexité en mémoire, au détriment de la complexité en nombre d’opérations ;
- Et inversement.
Pour les algorithmes que nous rencontrerons en pratique, c’est la complexité en nombre d’opérations qui nous

posera des problèmes. On essayera de l’optimiser.
On distingue plusieurs types de complexité :
- Complexité dans le pire des cas : complexité dans le cas où toutes les itérations sont effectuées, pour toutes

les données : c’est la complexité maximale, importante pour les systèmes lourds voire critiques pour lesquels
le pire peut arriver ;

- Complexité dans le meilleur des cas : lorsqu’un minimum d’opérations sont effectuées, cette complexité est
rarement intéressante dans une première approche ;

- Complexité en moyenne : qui utilise des notions de probabilité ; elle est utilisée par exemple pour les
algorithmes du quotidien comme les moteurs de recherche.

III-2) Temps d’exécution
 Le temps d’exécution d’un programme dépend de la machine, du langage utilisé, de l’algorithme. La part de
l’algorithme est obtenue par une évaluation de sa complexité temporelle.
 Nous posons les règles suivantes :

- Le temps d’exécution d’une affectation, d’une opération mathématique simple, d’une comparaison constituent
une unité de base ;

- Le temps d’exécution d’une suite d’instructions est la somme des temps d’exécution de chaque instruction ;
- Le temps d’exécution d’une instruction conditionnelle « si » est inférieur ou égal au maximum des temps

d’exécution des instructions ;
- Le temps d’exécution d’une boucle pour i variant de 1 à p est p fois le temps d’exécution de instructions, si ce

temps est constant.
- Pour une boucle tant que, l’étude se mène aussi au cas par cas.
L’évaluation du temps d’exécution d’un algorithme se réduit ainsi à une évaluation en fonction d’un nombre n,

(entier représentant la taille des données en entrée), du nombre total d’opérations élémentaires noté 𝐶𝐶𝑛𝑛. Le niveau de
complexité correspond au type de croissance de la suite 𝐶𝐶𝑛𝑛.

Suivant les valeurs de l’entrée, 𝐶𝐶𝑛𝑛 peut pendre des valeurs très différentes. Si, par exemple, nous parcourons une
liste à l’aide d’une boucle, à la recherche d’un élément, celui-ci peut se trouver en premier et nous sortons de la boucle,
c’est le cas le plus favorable. Il peut se trouver à la fin de la liste, c’est le pire des cas.

III-3) Niveaux de complexité

On a rencontré des niveaux de complexité différents lors de l’étude des tris. Cependant on retrouve souvent les
mêmes complexités dans les algorithmes :

- Complexité constante : 𝐶𝐶𝑛𝑛~1. Le temps d’exécution est borné (indépendant de n). C’est le cas, par exemple,
pour obtenir le premier élément d’une liste.

- Complexité logarithmique : 𝐶𝐶𝑛𝑛~ log2(𝑛𝑛). C’est le cas avec la recherche dichotomique dans une liste triée.
- Complexité linéaire : 𝐶𝐶𝑛𝑛~𝑛𝑛. Cet ordre de grandeur peut s’obtenir avec une boucle non conditionnelle. Par

exemple, le calcul de la somme ou de la moyenne de n termes, la recherche séquentielle dans une liste non triée
de longueur n, ont une complexité en 𝑛𝑛.

- Complexité log-linéaire ou linéarithmique : 𝐶𝐶𝑛𝑛~𝑛𝑛 × log2(𝑛𝑛). C’est la complexité de certains algorithmes de tri
(fusion, rapide,…). (Chapitre suivant)

- Complexité quadratique : 𝐶𝐶𝑛𝑛~𝑛𝑛2. C’est la complexité d’algorithmes construits avec deux boucles imbriquées
comme certains algorithmes de tri (tri par insertion).

Il existe d’autres complexités comme la complexité exponentielle en 𝑘𝑘𝑛𝑛 ou polynomiale en 𝑛𝑛𝑘𝑘.

La complexité (ou le coût) en espace correspond aux tailles des variables utilisées.
Etudier la complexité temporelle consiste à évaluer le temps d’exécution d’un algorithme en fonction de la

taille des données en entrée.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 6 ~ Lycée Joffre - Montpellier

III-4) Exemples
a) Boucle « for »
Dans la boucle « for » on a deux opérations de complexité 1 (la somme et l’affichage). Vu que la
boucle s’effectue deux fois :

𝐶𝐶𝑛𝑛 = 2𝑛𝑛 ~ 𝑛𝑛

b) Boucles imbriquées

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a n passages avec deux opérations.
Le nombre total d’opérations est donc :

𝑛𝑛 × (1 + 𝑛𝑛 × 2) ~ 𝑛𝑛 + 2𝑛𝑛2 ~ 𝑛𝑛²

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a k passages avec deux opérations.
Le nombre total d’opérations est donc :

𝑛𝑛 × (1 + 𝑘𝑘 × 2) ~ 𝑛𝑛 + 2𝑛𝑛𝑛𝑛
Si on suppose 𝑘𝑘 ≪ 𝑛𝑛 alors 𝐶𝐶𝑛𝑛~𝑛𝑛

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a i passages avec deux opérations.
Pour chaque valeur de i on a donc : 1 + 𝑖𝑖 × 2 opérations
Le nombre total d’opérations est donc :

1 + (1 + 2) + (1 + 4) … + (1 + (𝑛𝑛 − 1) ∗ 2) = 𝑛𝑛 + 2�1 + 2 + ⋯+ (𝑛𝑛 − 1)�

= 𝑛𝑛 +
2�(𝑛𝑛 − 1)(𝑛𝑛)�

2
= 𝑛𝑛2

⇒ 𝐶𝐶𝑛𝑛~𝑛𝑛2

III-5) Propriétés

Des algorithmes permettant de résoudre un même problème, peuvent être rangés suivant leur ordre de
complexité du plus efficace au moins efficace. Le classement des ordres de complexité doit être connu : 1 → log2 𝑛𝑛 →
𝑛𝑛 → 𝑛𝑛 × log2 𝑛𝑛 → 𝑛𝑛2 …

Si deux blocs d’instructions successifs ont une complexité en 𝐶𝐶𝑛𝑛 alors la complexité totale est en 𝐶𝐶𝑛𝑛.
Exemple : 𝐶𝐶𝑛𝑛~𝑛𝑛 ⇒ 𝐶𝐶𝑛𝑛′~2𝑛𝑛~𝑛𝑛.

Si on répète 𝑛𝑛 fois un bloc d’instructions de complexité 𝐶𝐶𝑛𝑛 alors la complexité totale est en 𝑛𝑛 × 𝐶𝐶𝑛𝑛 .
Si deux blocs d’instructions successifs ont une complexité respectivement en 𝐶𝐶𝑛𝑛 pour le premier et en 𝐶𝐶𝑚𝑚

pour le second alors la complexité totale est en max(𝐶𝐶𝑛𝑛 ,𝐶𝐶𝑚𝑚) = 𝐶𝐶𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶𝑚𝑚.

Cours : Informatique IV ∼ Ecriture et analyse d’un programme Informatique tronc commun : PCSI2

Laurent Pietri ~ 7 ~ Lycée Joffre - Montpellier

III-6) Factorielle

Revenons sur le tri récursif de la factorielle, vérifions sa terminaison et sa correction.

- Terminaison
On considère le variant de boucle « n ». À chaque appel de la fonction récursive, il décroît d’une unité et finit par

atteindre la valeur 0 correspondant à la condition d’arrêt. Le programme se termine donc dans tous les cas si n ≥ 0. Par
contre, le programme ne se termine pas si n < 0.

- Correction

Soit 𝑃𝑃𝑛𝑛 : « La fonction fact(n) retourne n! » :
- 𝑃𝑃0 est vraie puisque c’est la condition d’arrêt.
- Supposons 𝑃𝑃𝑛𝑛 est vraie. La fonction fact(n+1) réalise l’opération : (𝑛𝑛 + 1) × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑛𝑛). Comme 𝑃𝑃𝑛𝑛 est vraie,

alors le programme retourne : (𝑛𝑛 + 1) × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑛𝑛) = (𝑛𝑛 + 1)𝑛𝑛! = (𝑛𝑛 + 1)!. La propriete 𝑃𝑃𝑛𝑛+1 est donc vraie.
On a démontré par récurrence que la propriété 𝑃𝑃𝑛𝑛 est vraie pour tout entier naturel n. La correction de la fonction
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛) est donc démontrée puisque la propriété 𝑃𝑃𝑛𝑛 est bien un invariant de boucle.

- Complexité
Le coût en temps d’un algorithme récursif est lié au nombre d’appels récursifs en fonction de n représentant le

nombre ou la taille de l’objet en entrée. Ce coût peut généralement s’exprimer par une relation de récurrence.
On note 𝐶𝐶𝑛𝑛 le coût en fonction de n et nous comptons le nombre de test et d’opérations arithmétiques.

- Pour 𝑛𝑛 = 0, nous avons un seul test donc 𝐶𝐶0 = 1
- Pour 𝑛𝑛 > 0, nous avons un test, une multiplication et un appel de la fonction 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑛𝑛 − 1). Soit 𝐶𝐶𝑛𝑛 = 2 +

𝐶𝐶𝑛𝑛−1. On reconnaît une suite arithmétique de raison 2 et de premier terme 𝐶𝐶0 = 1 d’où :
𝐶𝐶𝑛𝑛 = 1 + 2𝑛𝑛 ~ 𝑛𝑛

Le coût de la fonction factorielle est linéaire en n.

