Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

[F4 — Ecriture et analyse d’un programme

Lors des tout débuts de 'informatique, dans I'immédiat aprés-guerre, on travaillait directement en langage machine
ce qui demandait une connaissance technique tres spécifique. Le besoin s’est fait sentir de faciliter la tache du programmeur
en créant un langage intermédiaire. Arrivé & IBM en 1950, John Backus est confronté a la difficulté de noter les nombres.
Il élabore la syntaxe et le fonctionnement d’un langage intermédiaire entre le programmeur et la machine et concoit le

Fortran. De tres nombreux langages suivirent tres rapidement

Objectifs :
- Concevoir des assertions pour vérifier certaines conditions.
- Savoir prouver la terminaison et la correction d’un algorithme.
- Acquérir des compétences sur la notion de complexité.

I — Instructions et spécifications
I-1) Instructions
Une instruction est un morceau de code minimal qui produit un effet. Une instruction est exécutée par une machine.

Une instruction simple peut s’écrire sur une seule ligne. On peut en écrire plusieurs séparées par des points-virgules. Outre
I’expression et 'affectation, quelques instructions simples sont :

e Affirmer avec assert, qui est suivi d’une expression, (les assertions sont précisées plus loin dans ce chapitre) ;

e Renvoyer avec return, qui est suivi d’une expression et s’emploie uniquement dans une fonction ;

e Arréter avec break, mot isolé qui permet d’arréter une boucle ;

e Importer avec import, suivi d’'un nom de module, ou de fonction, appartenant a4 un module qui est précisé.

Une instruction composée est une instruction sur une ligne terminée par deux-points suivie d’une ou plusieurs
instructions indentées : on dispose par exemple de :
e if qui peut étre suivi de elif, de else pour exécuter des instructions selon une condition ;
e foret de while pour exécuter des instructions de maniere répétée ;
e def pour définir une fonction.

1-2) Spécifications

Une spécification permet d’informer les utilisateurs de la tache effectuée par la fonction, de préciser les
contraintes imposées pour les parametres et ce qui peut étre attendu des résultats. Elle peut aussi préciser les
messages d’erreurs affichés en cas de mauvaise utilisation.

La spécification est destinée a l'utilisateur. Elle n’est pas utilisée par 'interpréteur « Python ». On la représente
par a laide de « docstrings » identifiés par des triples guillemets. Si on souhaite obtenir des informations de I'interpréteur,
on utilisera la fonction help.

help(divmod)

Help on built-in function divmod in module builtins:

divmod(x, v, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

La spécification d’une fonction est écrite, comme l’est un commentaire dans un programme, a I'attention des
utilisateurs qui ont besoin de savoir comment 'utiliser. L’objectif est de les éclairer, de les aider a saisir rapidement le role
d’une ou plusieurs instructions. Un choix pertinent dans les noms de variables et de fonctions participe aussi a la

compréhension d'un code. Voici comment définir une fonction avec sa spécification et quelques annotations (représentées
ici par #) :

Laurent Pietri ~1~ Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme

Informatique tronc commun : PCSI2

Entrée [67]: def permute(liste):
"""liste est de type list
la fonction permute le premier et le dernier élément
et renvoie la nouvelle liste"""
n=len(liste)
copie=liste[:] #copie de la liste originale
copie[@],copie[n-1]=copie[n-1],copie[@] #permutation des valeurs
return copie

help(permute)
liste2=[1,2,3]
permute(liste2)

Help on function permute in module __main__:

permute(liste)
liste est de type list
la fonction permute le premier et le dernier élément
et renvoie la nouvelle liste

Oout[67]: [3, 2, 1]

Il faut bien comprendre qu’une spécification est une sorte de contrat entre 'utilisateur et 'auteur du code. L’auteur

garantit un résultat sous réserve d’une utilisation correcte précisée par la spécification.

IT — Annotations, assertions et tests

II-1) Annotations et commentaires

Un programme doit pouvoir étre lu et relu facilement par I'auteur mais aussi par quelqu'un qui découvre le

programme. Il est important pour cela d’annoter certaines lignes de code ou des blocs d’instructions afin de préciser leur

r6le. On utilise pour cela un commentaire qui est une ligne de texte précédée du symbole #.

Comme c’est le cas pour une spécification, un commentaire n’est pas utilisé par U'interpréteur Python. Un choix

de structure ou de méthode par exemple peut aussi étre précisé et expliqué a ’aide de commentaires.

11-2) Assertion

Une spécification permet d’éclairer sur les données en entrées, le type des valeurs autorisées, la plage de valeurs

acceptées. On peut ajouter des instructions qui vont arréter le programme en cas de mauvaises utilisation. Une assertion

est l'affirmation qu'une propriété est vraie. Elle est composée du mot assert suivi d’une expression dont la valeur est

interprétée comme une valeur booléenne. Si I'expression a la valeur True il ne se passe rien, sinon le programme est

interrompu et un message d’erreur s’affiche AssertionError. Voici un exemple simple :

Entrée [2]: def inverse(x):

assert x!=0
return 1/x

inverse(3)

Out[2]: ©.3333333333333333

Entrée [3]: inverse(©)

x est un nombre non nul de type float/int, on renvoie 1'inverse de x"""

AssertionError Traceback (most recent call last)

Dans cet autre exemple, on vérifie que k est bien une clé présente dans le dictionnaire.

def animaux(dico,k):
"""dico est un dictionnaire, k est une clé de ce dictionnaire
assert k in dico

dico={"félin":"chat","oiseau":"faucon"}

animaux(dico, "félin")

animaux(dico, "mammifere")

AssertionError Traceback (most recent call last)
Cell In[12], line 6

4 dico={"félin":"chat","oiseau":"faucon"}

5 animaux(dico,"félin")
----> 6 animaux(dico, "mammifére")

Cell In[12], line 3, in (dico, k)

1 def animaux(dico,k):

2 """dico est un dictionnaire, k est une clé de ce dictionnaire
---->3 assert k in dico

AssertionError:

Laurent Pietri ~2~

Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

I1-3) Tests

Pour s’assurer qu'un programme fonctionne, il faut le tester, soit dans son ensemble (test systéme), soit morceau
par morceau (test unitaire).
Pour effectuer ces tests, on peut utiliser la méthode « assert » et il faut définir un certain nombre de cas dont on connait
la réponse et vérifier que ’exécution produit bien le résultat attendu.

Tester un programme est une condition nécessaire au bon fonctionnement du code mais pas suffisante. Ce n’est
pas parce que tous les tests ont réussi qu’il n’y a pas de bug, en revanche si un des tests échoue, on sait qu’il y en a au
moins un ;-)

Revenons sur 'exemple de la fonction « permute » :

def permute(liste):
"""liste est de type list,la fonction permute le premier et le dernier élément
et renvoie la nouvelle liste"""
n=len(liste)
copie=liste[:] #copie de La Liste originale
copie[@],copie[n-1]=copie[n-1],copie[@] #permutation des valeurs
return copie

hssert (permute([1,2,3,4])==[4,2,3,1])
assert permute([1])==[1]
assert permute([])==[]

IndexError Traceback (most recent call last)
Cell In[18], line 14

12 assert (permute([1,2,3,4])==[4,2,3,1])

13 assert permute([1])==[1]
---> 14 assert permute([])==[]

Cell In[18], line 6, in (liste)
4 n=len(liste)
5 copie=liste[:] #copie de la liste originale

----> 6 copie[@],copie[n-1]=copie[n-1],copie[@] #permutation des valeurs
7 return copie

IndexError: list index out of range

On remarque ainsi qu’on avait pas prévu le cas de la liste vide il nous faudra donc modifier notre programme en
tenant compte de ce cas ou le spécifier.

IIT — Terminaison et Correction
IT1-1) Introduction

Lorsqu’on écrit un algorithme, il est impératif de vérifier que cet algorithme produit un résultat apres un nombre
fini d’étapes et que ce résultat est correct dans le sens ot il est conforme a la spécification précisée.

Un algorithme itératif est construit avec des boucles. Le nombre de passages dans une boucle doit étre fini. (Si
Palgorithme est récursif, le nombre d’appels récursifs doit étre fini) Deux conditions sont donc a vérifier :

- L’algorithme donne une réponse, c’est ’étude de la terminaison ;

- La réponse donnée est celle attendue, c’est 1’étude de la correction.
Si les deux conditions sont satisfaites, nous disons que I'algorithme est valide.

Lorsqu’il se termine, I'algorithme donne la réponse attendue on parle de correction partielle. Si la terminaison est
assurée dans tous les cas et que la réponse est correcte, on parle de correction totale.

Pour prouver la terminaison d’un algorithme itératif, nous disposons de la notion de variant de boucle. Pour
prouver qu’un algorithme itératif est correct, nous disposons de la notion d’invariant de boucle.

I1I-2) Variant de boucle

Dans la plupart des cas, on utilise une (ou des variables) qui va permettre de démontrer que la boucle s’arréte
(variant de boucle) et que le programme est correct (invariant de boucle)
Le variant de boucle est une expression dont les valeurs prises au cours des itérations constituent une suite convergente
en un nombre fini d’étapes vers une valeur satisfaisant la condition d’arrét tout au long de la boucle, en général c’est une
variable :

- A valeurs entitres ;

- Toujours positive en entrée de boucle ;

- Et, qui diminue (ou augmente) strictement apreés chaque itération sans dépasser une valeur choisie.
On peut alors en conclure que la boucle se termine.

Laurent Pietri ~3~ Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

def div(N,d):
q=9
r=N
while r>=d:
g=q+1
r=r-d
return(N,q,r)

div(19,3)

(19, 6, 1)

Dans notre exemple la variable r :
- Reste positive tout au long de 'algorithme.
- Diminue a chaque itération.
- Décroit jusqu'a la valeur de 1 > 0.
Ainsi la variable r joue le role de variant de boucle : le programme se termine.

I1I-3) Invariant de boucle
Un invariant de boucle est une propriété :
- Qui est vérifiée avant d’entrer dans la boucle,
- Qui si elle est vérifiée avant une itération est vérifiée apres celle-ci,
- Qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que le programme est correct.

La démonstration se fait par récurrence, convenablement rédigée : initialisation, hérédité, conclusion.

nnu
w o ®

m
p
a
b=2

while m<a:
m=m+1
p=p+b
print(m,p)

w N =
[\~ N1

Sur cet exemple, « m » joue le role de variant de boucle :
- C’est un entier positif
- Qui croit jusqu’a une valeur limite « a ».

Le programme se termine bien.

Montrons que la quantité p = m X b est un invariant de boucle.

e Initialisation
m=0,p=0=p=mX b vérifiée au rang 0.

o Hérédité
Supposons que p = m X b vérifiée alors au tour suivant :

m =m+1letp' =p+bdou:
pP=(m+1)Xb=mxb+b=m+1Db=m'xb

e Conclusion

La propriété est donc vraie au rang m 4+ 1. p = m X b est bien un invariant de boucle. A la fin du programme on
aura : p = a X b. La correction est vérifiée.

Si le programme se termine (variant de boucle) et qu’il donne le bon résultat (invariant de boucle) on dit
qu’il y a : correction totale.

IV — Complexité
IV-1) Définitions

Lorsqu’un algorithme est correct, il doit encore, avant d’étre écrit et exécuté, satisfaire & deux impératifs en termes
de consommation de ressources :

- Utiliser un espace en mémoire acceptable, on parle de complexité en espace ;

- Produire la réponse attendue en un temps acceptable, on parle de complexité temporelle.

Laurent Pietri ~4 ~ Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

La complexité (ou le cofit) en espace correspond aux tailles des variables utilisées.
Etudier la complexité temporelle consiste a évaluer le temps d’exécution d’un algorithme en fonction de la

taille des données en entrée.

Il existe une regle pratique qui s’observe fréquemment : pour une méme tache, on peut souvent :

Optimiser la complexité en mémoire, au détriment de la complexité en nombre d’opérations ;

Et inversement.

Pour les algorithmes que nous rencontrerons en pratique, c’est la complexité en nombre d’opérations qui nous

posera des problémes. On essayera de 'optimiser.

On distingue plusieurs types de complexité :

Complexité dans le pire des cas : complexité dans le cas ou toutes les itérations sont effectuées, pour toutes
les données : c’est la complexité maximale, importante pour les systémes lourds voire critiques pour lesquels
le pire peut arriver ;

Complexité dans le meilleur des cas : lorsqu'un minimum d’opérations sont effectuées, cette complexité est
rarement intéressante dans une premiere approche ;

Complexité en moyenne : qui utilise des notions de probabilité ; elle est utilisée par exemple pour les
algorithmes du quotidien comme les moteurs de recherche.

[I-2) Temps d’exécution

Le temps d’exécution d'un programme dépend de la machine, du langage utilisé, de I'algorithme. La part de

I’algorithme est obtenue par une évaluation de sa complexité temporelle.

Nous posons les regles suivantes :

Le temps d’exécution d'une affectation, d’une opération mathématique simple, d’'une comparaison constituent
une unité de base ;

Le temps d’exécution d’une suite d’instructions est la somme des temps d’exécution de chaque instruction ;
Le temps d’exécution d’une instruction conditionnelle « si » est inférieur ou égal au maximum des temps
d’exécution des instructions ;

Le temps d’exécution d’une boucle pour i variant de 1 a p est p fois le temps d’exécution de instructions, si ce
temps est constant.

Pour une boucle tant que, I’étude se meéne aussi au cas par cas.

L’évaluation du temps d’exécution d’un algorithme se réduit ainsi a une évaluation en fonction d’un nombre n,

(entier représentant la taille des données en entrée), du nombre total d’opérations élémentaires noté C,. Le niveau de

complexité correspond au type de croissance de la suite C,.

Suivant les valeurs de l'entrée, C, peut pendre des valeurs tres différentes. Si, par exemple, nous parcourons une

liste a 'aide d’une boucle, a la recherche d’un élément, celui-ci peut se trouver en premier et nous sortons de la boucle,

c’est le cas le plus favorable. Il peut se trouver a la fin de la liste, c’est le pire des cas.

I11-3) Niveaux de complexité

On a rencontré des niveaux de complexité différents lors de 1’étude des tris. Cependant on retrouve souvent les

mémes complexités dans les algorithmes :

11 existe d’autres complexités comme la complexité exponentielle en k™ ou polynomiale en n”.

Complexité constante : C,~1. Le temps d’exécution est borné (indépendant de n). C’est le cas, par exemple,
pour obtenir le premier élément d’une liste.

Complexité logarithmique : C,~log,(n). C’est le cas avec la recherche dichotomique dans une liste triée.
Complexité linéaire : C,~n. Cet ordre de grandeur peut s’obtenir avec une boucle non conditionnelle. Par
exemple, le calcul de la somme ou de la moyenne de n termes, la recherche séquentielle dans une liste non triée
de longueur n, ont une complexité en n.

Complexité log-linéaire ou linéarithmique : C,~n X log,(n). C’est la complexité de certains algorithmes de tri
(fusion, rapide,...). (Chapitre suivant)

Complexité quadratique : C,~n?. C’est la complexité d’algorithmes construits avec deux boucles imbriquées

comme certains algorithmes de tri (tri par insertion).
k

Laurent Pietri

~5~ Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

I11-4) Exemples n=5
for i in range(n):
a) Boucle « for » x=i+i

int("x=",%)
Dans la boucle « for » on a deux opérations de complexité 1 (la somme et Paffichage). Vu que la P

boucle s’effectue deux fois :

X= 0
Ch,=2n~n w2
X= 4
b) Boucles imbriquées 6
n=4 x=
for i in range(n):
x=i+i
for j in range(n):

y=x*j
print("y=",y,end=",")

y= 0,y= 8,y= 6,y= 0,y= 0,y= 2,y= 4,y= 6,y= 0,y= 4,y= 8,y= 12,y= 0,y= 6,y= 12,y= 18

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a n passages avec deux opérations.
Le nombre total d’opérations est donc :

nx(1+nx2)~n+2n?~n?

n=4
k=3
for i in range(n):
x=1+i
for j in range(k):
y=X*j
print("y=",y,end=",")

y= 0,y= 8,y= 0,y= 0,y= 2,y= 4,y= 0,y= 4,y= 8,y= 0,y= 6,y= 12

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a k passages avec deux opérations.
Le nombre total d’opérations est donc :

nX(1+kx2)~n+2nk
Si on suppose k <K n alors C,~n

n=4

for i in range(n):
x=i+i
for j in range(i):
y=x*j
print("y=",y,end=",")

y= @,y= B,y= 4,y= 0,y= 6,y= 12

Dans la boucle externe (celle sur i) il y a n passages avec une opération.
Dans la boucle interne (celle sur j) il y a i passages avec deux opérations.
Pour chaque valeur de i on a donc : 1+ i X 2 opérations
Le nombre total d’opérations est donc :
1+14+2)+(10+4) .. +Q+m-1D*2)=n+2(1+2++n-1)
=n+ —2((n —21)(71)) =n?
= Cp~n?

III-5) Propriétés

/ Des algorithmes permettant de résoudre un méme probléme, peuvent étre rangés suivant leur ordre de\

complexité du plus efficace au moins efficace. Le classement des ordres de complexité doit étre connu : 1 = log, n =
n-nXlog,n - n?..

Si deux blocs d’instructions successifs ont une complexité en C, alors la complexité totale est en C,.
Exemple : C,~n = C,~2n~n.

Si on répete n fois un bloc d’instructions de complexité C, alors la complexité totale est en n X C,,.

Si deux blocs d’instructions successifs ont une complexité respectivement en C, pour le premier et en C,,
Qour le second alors la complexité totale est en max(C,, C,,) = C, ou C,,. /

Laurent Pietri ~6~ Lycée Joffre - Montpellier

Cours : Informatique IV ~ Ecriture et analyse d’'un programme Informatique tronc commun : PCSI2

II1-6) Factorielle

In [2]: def fact(n):
if n==0:
return 1 #lLe cas de base
else:
return n*fact(n-1)

fact(3)

Out[2]: 6

Revenons sur le tri récursif de la factorielle, vérifions sa terminaison et sa correction.

- Terminaison
On considére le variant de boucle « n ». A chaque appel de la fonction récursive, il décroit d'une unité et finit par
atteindre la valeur 0 correspondant & la condition d’arrét. Le programme se termine donc dans tous les cas si n = 0. Par

contre, le programme ne se termine pas si n < 0.

- Correction
Soit B, : « La fonction fact(n) retourne n! » :
- P, est vraie puisque c’est la condition d’arrét.
- Supposons P, est vraie. La fonction fact(n+1) réalise 'opération : (n +1) X fact (n). Comme B, est vraie,
alors le programme retourne : (n +1) X fact (n) = (n + 1)n! = (n + 1)!. La propriete P, .4 est donc vraie.

On a démontré par récurrence que la propriété P, est vraie pour tout entier naturel n. La correction de la fonction

fact(n) est donc démontrée puisque la propriété B, est bien un invariant de boucle.

- Complexité

Le cotit en temps d'un algorithme récursif est lié au nombre d’appels récursifs en fonction de n représentant le
nombre ou la taille de 'objet en entrée. Ce colit peut généralement s’exprimer par une relation de récurrence.
On note C, le cotit en fonction de n et nous comptons le nombre de test et d’opérations arithmétiques.

- Pour n = 0, nous avons un seul test donc Cy = 1

- Pour n > 0, nous avons un test, une multiplication et un appel de la fonction fact (n —1). Soit C, =2 +

C,—1. On reconnailt une suite arithmétique de raison 2 et de premier terme €y = 1 d’ou :
C,=1+2n~n

Le cotit de la fonction factorielle est linéaire en n.

Laurent Pietri ~7~ Lycée Joffre - Montpellier

