
Cours : Informatique III ∼ Fonctions récursives Informatique tronc commun : PCSI2

Laurent Pietri ~ 1 ~ Lycée Joffre - Montpellier

IF3 – Fonctions récursives

En programmation et en mathématiques, de nombreux problèmes se décrivent naturellement de manière récursive,
c’est-à-dire en se ramenant à des sous-problèmes de même nature mais de taille plus petite. La récursivité permet de définir
une fonction en fonction d’elle-même. Les fonctions récursives apparaissent dans de nombreux domaines : calculs
arithmétiques (factorielle, puissances), structures de données (listes, arbres), algorithmes de tri (tri fusion, tri rapide), ou
encore résolution de problèmes combinatoires (suites, tours de Hanoï…).

I – Définition et principe général
I-1) Exemple

Lorsqu’on exécute la fonction f, on relance f qui relance f…Cette fonction ne s’arrête jamais donc jamais.
Il convient lors de l’écriture d’une fonction récursive de faire en sorte qu’on puisse sortir de cette boucle infinie. C’est le
rôle du « cas de base » ou « test d’arrêt ».

I-2) Principe
La récursivité est la base de la stratégie dite « diviser pour régner » :

- Traiter les cas de base ;
- Diviser : le problème à traiter est divisé en sous problèmes plus simples ;
- Régner : on applique récursivement l’algorithme à chaque sous problème ;
- Combiner : on trouve la solution du problème initial en combinant les différents résultats intermédiaires.
On peut ainsi faire le lien avec la récurrence en mathématiques :
- Calcul de f(0) : le cas de base.
- Exprimer f(n) en fonction de f(n-1) : régner.

I-3) Exemple de la factorielle
 La fonction factorielle peut-être définie ainsi afin de préparer notre algorithme récursif :

𝑛𝑛! = � 1 𝑠𝑠𝑠𝑠 𝑛𝑛 = 0
𝑛𝑛 × (𝑛𝑛 − 1)! 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Objectifs :

- Comprendre la notion de récursivité :
o Comprendre le principe d’une fonction récursive
o Reconnaître un programme récursif et le distinguer d’un programme itératif ;
o Savoir écrire une fonction récursive (principe du test d’arrêt) ;
o Parvenir à formuler une solution récursive à un problème.

Le cas de base (ou test d’arrêt) est une condition qui permet de stopper la récursion.

Une fonction récursive doit respecter les trois critères suivants :
- Contenir un cas de base ;
- Modifier son état pour pouvoir se ramener au cas de base ;
- S’appeler elle-même.

Cours : Informatique III ∼ Fonctions récursives Informatique tronc commun : PCSI2

Laurent Pietri ~ 2 ~ Lycée Joffre - Montpellier

L’arbre ci-contre représente les différents appels de la fonction fact(3).
Les différents appels de la fonction récursive sont stockés dans une pile : c’est la phase de descente. Quand
on atteint la condition d’arrêt, on passe à la phase de remontée et les appels sont désempilés jusqu’à
retourner à l’appel initial. Au dernier appel de la fonction récursive, n = 0. La condition d’arrêt est
vérifiée. On passe à la phase de remontée.
Pour calculer la factorielle de n, on applique cet algorithme a un sous-problème (ici factorielle de n–1).
Cette méthode de décomposition/recomposition est appelée « diviser pour régner ».

II – Les différents types de récursion
II-1) Récursion simple

Les propriétés d’une récursion simple :

- Un seul cas de base
- Un seul appel récursif

II-2) Récursion multiple

a) Cas de base multiples
La définition de la fonction puissance(x,n) n’est pas unique. On peut par exemple identifier deux cas de base «

faciles », celui pour n = 0 mais également celui pour n = 1.

b) Cas récursif multiples
Il est également possible de définir une fonction avec plusieurs cas récursifs. Par exemple, on peut donner une autre
définition pour puissance(x,n) en distinguant deux cas récursifs selon la parité de n.

- Si n est pair, on a alors : 𝑥𝑥𝑛𝑛 = �𝑥𝑥
𝑛𝑛
2�

2

- Si n est impair, on a alors 𝑥𝑥𝑛𝑛 = 𝑥𝑥 ∗ �𝑥𝑥
𝑛𝑛−1
2 �

2
.

c) Double récursion

Les expressions qui définissent une fonction peuvent aussi dépendre de plusieurs appels à la fonction en cours de définition.
Par exemple, la fonction fibonacci(n), qui doit son nom au mathématicien Leonardo Fibonacci, est définie récursivement,
pour tout entier naturel n, de la manière suivante :

Cours : Informatique III ∼ Fonctions récursives Informatique tronc commun : PCSI2

Laurent Pietri ~ 3 ~ Lycée Joffre - Montpellier

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛) �
0 𝑠𝑠𝑠𝑠 𝑛𝑛 = 0
1 𝑠𝑠𝑠𝑠 𝑛𝑛 = 1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 − 2) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 − 1) 𝑠𝑠𝑠𝑠 𝑛𝑛 > 1

III – Efficacité de la récursivité
III-1) Mémoïsation

L’intérêt d’une programmation récursive est la simplicité de la mise en œuvre lorsque qu’une récurrence simple
apparaît dans le problème à modéliser et la facilité avec laquelle on peut conduire les preuves de programmes. Mais une
relation simple, programmée telle quelle, peut conduire à une explosion combinatoire du nombre des appels récursifs.

 Dans notre programme la fonction Fibonacci est appelé 15 fois…Pour Fibonacci(10) la fonction est appelée 177
fois. Voici l’arbre qui présente le suivi des appels récursifs.

On peut toutefois réécrire la fonction pour la rendre plus efficace et c’est ce que nous allons faire en stockant les

Fibonacci(n) déjà calculées dans un dictionnaire.
Ainsi le nombre d’étapes passe pour Fibonacci(10) de 177 à 19. Donc un fort gain de temps de calcul.

Cours : Informatique III ∼ Fonctions récursives Informatique tronc commun : PCSI2

Laurent Pietri ~ 4 ~ Lycée Joffre - Montpellier

Cette technique de stockage est appelé « mémoïsation ».

III-2) Avantages et défauts de la récursivité
Les fonctions récursives ne sont pas toujours intéressantes et notamment ne font pas forcément gagner de temps de calcul
puisqu'elles stockent au fur et à mesure les différentes valeurs ce qui est très gourmand en mémoire.
 Lorsque ça s'y prête, récurrence assez évidente notamment, on écrit des fonctions récursives mais dans d'autres cas
on préfèrera un algorithme itératif.
Les principaux avantages de la récursivité sont que la construction de l'algorithme est en général assez simple et que la
preuve et la correction d'un programme récursif sont plus simples à mette en œuvre que pour un code itératif.

