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IF3 – Fonctions récursives 
 

En programmation et en mathématiques, de nombreux problèmes se décrivent naturellement de manière récursive, 
c’est-à-dire en se ramenant à des sous-problèmes de même nature mais de taille plus petite. La récursivité permet de définir 
une fonction en fonction d’elle-même. Les fonctions récursives apparaissent dans de nombreux domaines : calculs 
arithmétiques (factorielle, puissances), structures de données (listes, arbres), algorithmes de tri (tri fusion, tri rapide), ou 
encore résolution de problèmes combinatoires (suites, tours de Hanoï…). 
 
 
 
 
 
 
 
 
 

I – Définition et principe général 
I-1) Exemple 

  
Lorsqu’on exécute la fonction f, on relance f qui relance f…Cette fonction ne s’arrête jamais donc jamais. 
Il convient lors de l’écriture d’une fonction récursive de faire en sorte qu’on puisse sortir de cette boucle infinie. C’est le 
rôle du « cas de base » ou « test d’arrêt ». 
 
 
 
 
I-2) Principe 
La récursivité est la base de la stratégie dite « diviser pour régner » : 

- Traiter les cas de base ; 
- Diviser : le problème à traiter est divisé en sous problèmes plus simples ; 
- Régner : on applique récursivement l’algorithme à chaque sous problème ; 
- Combiner : on trouve la solution du problème initial en combinant les différents résultats intermédiaires. 
On peut ainsi faire le lien avec la récurrence en mathématiques : 
- Calcul de f(0) : le cas de base. 
- Exprimer f(n) en fonction de f(n-1) : régner. 

 
 
 
 
 
 
 
I-3) Exemple de la factorielle 
 La fonction factorielle peut-être définie ainsi afin de préparer notre algorithme récursif : 

𝑛𝑛! = � 1 𝑠𝑠𝑠𝑠 𝑛𝑛 = 0
𝑛𝑛 × (𝑛𝑛 − 1)!   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

Objectifs : 

- Comprendre la notion de récursivité : 
o Comprendre le principe d’une fonction récursive 
o Reconnaître un programme récursif et le distinguer d’un programme itératif ; 
o Savoir écrire une fonction récursive (principe du test d’arrêt) ; 
o Parvenir à formuler une solution récursive à un problème. 

Le cas de base (ou test d’arrêt) est une condition qui permet de stopper la récursion. 

Une fonction récursive doit respecter les trois critères suivants : 
- Contenir un cas de base ; 
- Modifier son état pour pouvoir se ramener au cas de base ; 
- S’appeler elle-même. 
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L’arbre ci-contre représente les différents appels de la fonction fact(3). 
Les différents appels de la fonction récursive sont stockés dans une pile : c’est la phase de descente. Quand 
on atteint la condition d’arrêt, on passe à la phase de remontée et les appels sont désempilés jusqu’à 
retourner à l’appel initial. Au dernier appel de la fonction récursive, n = 0. La condition d’arrêt est 
vérifiée. On passe à la phase de remontée. 
Pour calculer la factorielle de n, on applique cet algorithme a un sous-problème (ici factorielle de n–1). 
Cette méthode de décomposition/recomposition est appelée « diviser pour régner ». 
 

II – Les différents types de récursion 
II-1) Récursion simple 

 
Les propriétés d’une récursion simple : 

- Un seul cas de base 
- Un seul appel récursif 

 
II-2) Récursion multiple 

a) Cas de base multiples 
La définition de la fonction puissance(x,n) n’est pas unique. On peut par exemple identifier deux cas de base « 

faciles », celui pour n = 0 mais également celui pour n = 1. 

 
 

b) Cas récursif multiples 
Il est également possible de définir une fonction avec plusieurs cas récursifs. Par exemple, on peut donner une autre 
définition pour puissance(x,n) en distinguant deux cas récursifs selon la parité de n.    

- Si n est pair, on a alors : 𝑥𝑥𝑛𝑛 = �𝑥𝑥
𝑛𝑛
2�

2
 

- Si n est impair, on a alors 𝑥𝑥𝑛𝑛 = 𝑥𝑥 ∗ �𝑥𝑥
𝑛𝑛−1
2 �

2
. 

 

 
c) Double récursion 

Les expressions qui définissent une fonction peuvent aussi dépendre de plusieurs appels à la fonction en cours de définition. 
Par exemple, la fonction fibonacci(n), qui doit son nom au mathématicien Leonardo Fibonacci, est définie récursivement, 
pour tout entier naturel n, de la manière suivante : 
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𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛) �
0 𝑠𝑠𝑠𝑠 𝑛𝑛 = 0
1 𝑠𝑠𝑠𝑠 𝑛𝑛 = 1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 − 2) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 − 1) 𝑠𝑠𝑠𝑠 𝑛𝑛 > 1
 

 

 
 

III – Efficacité de la récursivité 
III-1) Mémoïsation 

L’intérêt d’une programmation récursive est la simplicité de la mise en œuvre lorsque qu’une récurrence simple 
apparaît dans le problème à modéliser et la facilité avec laquelle on peut conduire les preuves de programmes. Mais une 
relation simple, programmée telle quelle, peut conduire à une explosion combinatoire du nombre des appels récursifs. 

 
 Dans notre programme la fonction Fibonacci est appelé 15 fois…Pour Fibonacci(10) la fonction est appelée 177 
fois. Voici l’arbre qui présente le suivi des appels récursifs. 
 

 
On peut toutefois réécrire la fonction pour la rendre plus efficace  et c’est ce que nous allons faire en stockant les 

Fibonacci(n) déjà calculées dans un dictionnaire. 
Ainsi le nombre d’étapes passe pour Fibonacci(10) de 177 à 19. Donc un fort gain de temps de calcul.  
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Cette technique de stockage est appelé « mémoïsation ». 
 
III-2) Avantages et défauts de la récursivité 
Les fonctions récursives ne sont pas toujours intéressantes et notamment ne font pas forcément gagner de temps de calcul 
puisqu'elles stockent au fur et à mesure les différentes valeurs ce qui est très gourmand en mémoire. 
 Lorsque ça s'y prête, récurrence assez évidente notamment, on écrit des fonctions récursives mais dans d'autres cas 
on préfèrera un algorithme itératif. 
Les principaux avantages de la récursivité sont que la construction de l'algorithme est en général assez simple et que la 
preuve et la correction d'un programme récursif sont plus simples à mette en œuvre que pour un code itératif. 


