Cours : Informatique III ~ Fonctions récursives Informatique tronc commun : PCSI2

IF3 — Fonctions récursives

En programmation et en mathématiques, de nombreux problemes se décrivent naturellement de maniere récursive,
c’est-a-dire en se ramenant a des sous-problémes de méme nature mais de taille plus petite. La récursivité permet de définir
une fonction en fonction d’elle-méme. Les fonctions récursives apparaissent dans de nombreux domaines : calculs
arithmétiques (factorielle, puissances), structures de données (listes, arbres), algorithmes de tri (tri fusion, tri rapide), ou

~

encore résolution de problémes combinatoires (suites, tours de Hanoi...).

Objectifs :

- Comprendre la notion de récursivité :

o Comprendre le principe d’une fonction récursive
Reconnaitre un programme récursif et le distinguer d’un programme itératif ;
Savoir écrire une fonction récursive (principe du test d’arrét) ;

© © 9

Parvenir a formuler une solution récursive a un probléme. /

o

I — Définition et principe général
I-1) Exemple

In [5]: def f():
f()

Lorsqu’on exécute la fonction f, on relance f qui relance f..Cette fonction ne s’arréte jamais donc jamais.
Il convient lors de I'écriture d’une fonction récursive de faire en sorte qu’on puisse sortir de cette boucle infinie. C’est le

role du « cas de base » ou « test d’arrét ».

[Le cas de base (ou test d’arrét) est une condition qui permet de stopper la récursion.]

I-2) Principe
La récursivité est la base de la stratégie dite « diviser pour régner » :
- Traiter les cas de base ;
- Diviser : le probleme a traiter est divisé en sous problémes plus simples ;
- Régner : on applique récursivement ’algorithme a chaque sous probleme ;
- Combiner : on trouve la solution du probleme initial en combinant les différents résultats intermédiaires.
On peut ainsi faire le lien avec la récurrence en mathématiques :
- Calcul de £(0) : le cas de base.
- Exprimer f(n) en fonction de f(n-1) : régner.

Une fonction récursive doit respecter les trois criteres suivants :
- Contenir un cas de base ;
- Modifier son état pour pouvoir se ramener au cas de base ;
- S’appeler elle-méme.

I-3) Exemple de la factorielle

La fonction factorielle peut-étre définie ainsi afin de préparer notre algorithme récursif :
nl = { 1sin=0
T Inx (n—1)! sinon

In [2]: def fact(n):
if n==0:
return 1 #Le cas de base
else:
return n*fact(n-1)

fact(3)

out[2]: 6

Laurent Pietri ~1~ Lycée Joffre - Montpellier

Cours : Informatique III ~ Fonctions récursives

Informatique tronc commun : PCSI2

L’arbre ci-contre représente les différents appels de la fonction fact(3).

Les différents appels de la fonction récursive sont stockés dans une pile : c’est la phase de descente. Quand
on atteint la condition d’arrét, on passe a la phase de remontée et les appels sont désempilés jusqu’a
retourner a l'appel initial. Au dernier appel de la fonction récursive, n = 0. La condition d’arrét est

vérifiée. On passe a la phase de remontée.

Pour calculer la factorielle de n, on applique cet algorithme a un sous-probleme (ici factorielle de n—1).

Cette méthode de décomposition/recomposition est appelée « diviser pour régner ».

IT — Les différents types de récursion

II-1) Récursion simple

def puissance(x,n):
if n==a:|
return 1 #Le cas de base
else:
return x*puissance(x,n-1) #Régner/Diviser/Combiner

puissance(2,4)

16

Les propriétés d’une récursion simple :
- Un seul cas de base
- Un seul appel récursif

11-2) Récursion multiple
a) Cas de base multiples

La définition de la fonction puissance(x,n) n’est pas unique. On peut par exemple identifier deux cas de base «

faciles », celui pour n = 0 mais également celui pour n = 1.

def puissance(x,n):
if n==0:
return 1 #lLe cas de base
elif n==1:
return x #Le second cas de base
else:
return x*puissance(x,n-1) #Régner/Diviser/Combiner

puissance(2,3)

8

b) Cas récursif multiples

Il est également possible de définir une fonction avec plusieurs cas récursifs. Par exemple, on peut donner une autre

définition pour puissance(x,n) en distinguant deux cas récursifs selon la parité de n.

n\ 2
- Sin est pair, on a alors : x™ = (xf)

n-1
- Sin est impair, on a alors x™ = x * (x 2) .

def puissance2(x,n):
if n ==
return 1
elif n%2== ©@: # n pair
return puissance2(x,n/2)**2 #ler appel récursif
else: # n impair
return x*puissance2(x,(n-1)/2)**2 #2eme appel récursif
puissance2(3,3)

27

c) Double récursion

Les expressions qui définissent une fonction peuvent aussi dépendre de plusieurs appels a la fonction en cours de définition.

Par exemple, la fonction fibonacci(n), qui doit son nom au mathématicien Leonardo Fibonacci, est définie récursivement,

pour tout entier naturel n, de la maniére suivante :

Laurent Pietri ~2~

Lycée Joffre - Montpellier

Cours : Informatique III ~ Fonctions récursives

Informatique tronc commun : PCSI2

Osin=0
fibonacci(n) lsin=1

fibonacci(n — 2) + fibonacci(n — 1) sin > 1

def fibonacci(n):

if n ==
return © #Cas de base 1
elif n ==
return 1 #Cas de base 2
else:
return fibonacci(n - 1) + fibonacci(n - 2) #Double appel récursif

fibonacci(6)

IIT — Efficacité de la récursivité
IT1-1) Mémoisation

L’intérét d’une programmation récursive est la simplicité de la mise en ceuvre lorsque qu'une récurrence simple

apparait dans le probleme a modéliser et la facilité avec laquelle on peut conduire les preuves de programmes. Mais une

relation simple, programmée telle quelle, peut conduire & une explosion combinatoire du nombre des appels récursifs.

Le
Le
Le
Le
Le
Le
Le
Le
Le
Le
Le
Le
Le
Le
Le

5

def fibonacci(n):

global c;c=c+1;print("Le nombre d'appel de la fonction est pour n=",n," ",c)
#0n crée une variable globale pour compter Le nombre d'appels de fibonacci...
if n == @:

return @ #Cas de base 1
elif n ==

return 1 #Cas de base 2
else:

return fibonacci(n - 1) + fibonacci(n - 2) #Double appel récursif

c=0;fibonacci(5)

nombre d'appel de la fonction est pour n= 5 1
nombre d'appel de la fonction est pour n= 4 2
nombre d'appel de la fonction est pour n= 3 3
nombre d'appel de la fonction est pour n= 2 4
nombre d'appel de la fonction est pour n= 1 5
nombre d'appel de la fonction est pour n=90 6
nombre d'appel de la fonction est pour n=1 7
nombre d'appel de la fonction est pour n= 2 8
nombre d'appel de la fonction est pour n=1 9
nombre d'appel de la fonction est pour n= 0 1@
nombre d'appel de la fonction est pour n= 3 11
nombre d'appel de la fonction est pour n= 2 12
nombre d'appel de la fonction est pour n= 1 13
nombre d'appel de la fonction est pour n= 90 14
nombre d'appel de la fonction est pour n= 1 15

Dans notre programme la fonction Fibonacci est appelé 15 fois..Pour Fibonacci(10) la fonction est appelée 177

fois. Voici I'arbre qui présente le suivi des appels récursifs.

On peut toutefois réécrire la fonction pour la rendre plus efficace et c’est ce que nous allons faire en stockant les

Fibonacci(n) déja calculées dans un dictionnaire.

Ainsi le nombre d’étapes passe pour Fibonacci(10) de 177 & 19. Donc un fort gain de temps de calcul.

Laurent Pietri ~3~

Lycée Joffre - Montpellier

Cours : Informatique

III ~ Fonctions récursives

Informatique tronc commun : PCSI2

memo={}

Le
Le
Le
Le
Le
Le
Le
Le
Le

8

def fibomemo(n):
global c;c=c+1l;print("Le nombre d'appel de la fonction est

if n in memo.keys()
return memo[n]

else

pour I’I=",I’l, " ",C)

! #0n teste si fibonacci(n) a déja été calculé

ifn==0orn==1:

memo[n] =

else :

nombre
nombre
nombre
nombre
nombre
nombre
nombre
nombre
nombre

memo[n] = fibomemo(n-1) + fibomemo(n-2); #Que L 'on
return memo[n]
c=0; fibomemo(5)

d'appel
d'appel
d'appel
d'appel
d'appel
d'appel
d'appel
d'appel
d'appel

de
de
de
de
de
de
de
de
de

1

la
la
la
la
la
la
la
la
la

fonction
fonction
fonction
fonction
fonction
fonction
fonction
fonction
fonction

est
est
est
est
est
est
est
est
est

pour
pour
pour
pour
pour
pour
pour
pour
pour

: #s1 non on calcule le nouvel élément

WNR R NWRUN

W oOo~NGOUV P WNR

stocke dans un dictionnaire

Cette technique de

stockage est appelé

I11-2) Avantages et défauts de la récursivité

« mémoisation ».

Les fonctions récursives ne sont pas toujours intéressantes et notamment ne font pas forcément gagner de temps de calcul

puisqu'elles stockent au fur et a mesure les différentes valeurs ce qui est trés gourmand en mémoire.

Lorsque ca s'y préte, récurrence assez évidente notamment, on écrit des fonctions récursives mais dans d'autres cas

on préferera un algorithme itératif.

Les principaux avantages de la récursivité sont que la construction de 1'algorithme est en général assez simple et que la

preuve et la correction d'un programme récursif sont plus simples a mette en ceuvre que pour un code itératif.

Laurent Pietri

Lycée Joffre - Montpellier

