Devoirs surveillés DS9 — Physique des ondes Physique : PC

Physique : DS10 — Savoir Faire

I) Corde vibrante (/6)

2
Montrer que l’énergie mécanique linéique d’une corde vibrante est de la forme : = 1#1 (ay) + %To (g—i) , puis
établir I’équation de conservation de l’énergie mécanique dans une corde : 668;:1 + dlv(R) =0 ou R est une grandeur que

l’on nommera et dont on donnera [’expression.

- Densité linéique d’énergie cinétique :

dE. =+ d(ay) s
c TM\5r) T T ax T 2M\ar

- Densité linéique d’énergie potentielle :
Calculons le travail élémentaire d'un opérateur pour allonger la corde au repos N ely+den)
de dx a ds tel que dl = ds — dx.

dE, = W, = +Tydl = +T, dx)? + (dy)? —d
14 op 0 0 ( ( x) ( J’) x) y(x+dr,1)
2 D.L 1 a 2

= +T,dx 1+(d—y) —1|R +T x—(—y) dx
0 dx 07 2 \ox
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- Densité linéique d’énergie mécanique :
1 ay\: 1 ay\*
[ _T 7
Tem = gh <6t) Tl (6x>

dey, 0y 62y+ dy 9%y
ot Maracr T 00x arox
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D’apres ’équation de D’Alembert : — = ¢ =Ty —
b a at? oz MG 0 gx2

0en T 6y62y+6y 0%y _ r d (6y6y>
= ot~ °\ataxz " axotox) °ox\ot ox
On introduit I'opérateur divergence :

dep, dy dy _ _ dy oy\ __,
T+ (-m (Gr5,)®) =0 =R =1 (530)w

Or: T, g—i = T, tan(a) ~T, sin(a)

=R = —T,sin(a) vyl = —T,. % U, (Poynting mécanique)

:,>ep=

- Equation de conservation de I’énergie :

II) Ondes sonores (/4)

Démontrez I’équation de propagation des ondes sonores
- FBuler linéarisé

Vu que le fluide est parfait et qu’on néglige la pesanteur on a : u (Z—TZ + (17. grad)ﬁ) = —gradp

( av—l) b,. grad —)\ grad
= Myt Ky T + (vl.grad)v1 = —grad ;39 +p;
<?;I:) ordre 1 ordre 2 en vy cste
en vy
On se limite aux termes du premier ordre donc tout produit de deux termes du premier ordre est un deuxiéme ordre et
sera négligé d’ou :
Ivy dv,  0py

Mo 5 —grad py = uy—— T +a =0

- C’onservation de la masse linéarisée
a
Soit : — + div(uv) =0 = M + div ((,uo + yl)vl)

En se limltant aux termes du premier ordre on a donc :
= ) +udivt, =0
at /u() 1

- Transformation thermodynamique isentropique
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R
BT w\ap) T T \w—pe), T
D’ou :
M1 = HoD1 X
Les équations de couplage a une dimension donnent :
dvy  dpy
Hogr T3y =0 @
M=o @

M1 = HoP1 X 3)

Afin de découpler les équations on va calculer : 4, % de deux facons :

0%y, 0%p,
D=y, @ =- 6627
V1 Hy
D=t 59 =~ 5p2
Le théoreme de Schwarz affirme que :
0*v, 9%v,
atdx  9xot
D’ou :
%p, 0%, D 0%p,  (opiry) 9%y
axz ot axz ~ at? PP
La surpression p; obéit donc a 1'équation de d'Alembert, unidimensionnelle :
0’py  10%p; 1
or 2o T T,

(La masse volumique y, et la vitesse v, vérifient la méme équation.)

III)  Effet Doppler (/4)

Physique : PC
1w
~——carpu, > N
l"’o D1 0 !
9%p,
Hols gz = 0

Effet Doppler. Dans le cas ot 'émetteur se déplace d la vitesse vy par rapport au récepteur. Démontrez le lien entre

Uécart de fréquence, la fréquence de I’émetteur, vy et ¢ la célérité de 'onde.

Distance lo initiale

»

&

Onde sonore a ¢

Formalisons cette situation : la distance initiale entre la personne et le haut-parleur est notée ;.

lo

- Le premier bip est émis en t, = 0. Il est recu en ty = — et ainsi de suite...
N° du Bip Instant d’émission Distance Instant de réception
Bip 0 to=10 ly b= lo
°" ¢
i t,=T L =1+ v, T l
Bip 1 1 1 0 0 t =T+ ?1
i) e the = (m— DT L1 =1y +vg(n—1DT [
..Bip n-1 n-1 = ( ) n-1= lo ol ) ! =m-DT+ ncl
i th_1 =nT I, =1y + vonT l
Bip n n—-1 n = to 0 ¢ =nT + n
c
On déduit la période T' percue par 1'observateur :
T =t —t’—T+£—T(1+&)
n+1 n c c
ainsi que la fréquence mesurée par 1'observateur :
I f I 1
f = Vo :'>f - f = f Vo -1
1+-—" 1+
c c
Si %0 « 1 alors on peut écrire : Af ~ — %0
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IV)  Klein-Gordon (/4)
Soit:r—ot)mE=W(div§)—Z§=—Z§ car divE =0
. ( 0B - 7 RN,
= rot (— —‘) =-AE & —a(rotg) =-A
a/ . ) -
MA = _a<H°]—+80H°E> = —AE
0] 102 .. 9 10%
© —Mys— s = —AEe AE =t o2
1 0%E oE

e iF-22E_ E
cz oz Mlg
Pour arriver a 1'équation de dispersion, on reporte la forme de 1'onde plane progressive monochromatique dans

I'équation de propagation. On en déduit :
L 0y o
~KE+ZE=1,yjoE
2 - mZ - —
= —Kk’E+ZE =pyeoo; E
o® — 0,°

Or:vy=—jg —u:f
2
jk = CZ

V) Klein-Gordon is back (/4)
2,2
Pour @ < o, cela correspond a un vecteur d'onde imaginaire pur : k = &j a)pcz 2= tjk,
:E — E(_;ej([Utiijx)

E = Ejetke* cos(awt)

En passant a la partie réelle,
On s’intéresse a une onde se « propageant » suivant les x positifs, par conséquent, on conserve ’expression : k = —jk, qui

—=E = Ege %% cos(at)

entraine une atténuation de I’onde et non une amplification qui n’est physiquement pas acceptable.
Cette onde est nommée onde évanescente, car celle-ci ne prend de valeurs notables que sur des distances de 1'ordre

et s'évanouit rapidement au-dela, le tout sans propagation.

1
de
k

2
?—wp®
=t "= +k,

Le vecteur d'onde est réel et on a une onde plane progressive monochromatique se propageant selon + u, selon le

Pouru)>0)p: k=+

sens choisi. On choisit +u, d’ou :
E = E;e]'(aﬁ—kﬂf)
=E = Eycos(wt — kix) u,
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