
Devoirs surveillés DS9 – Physique des ondes Physique : PC 
 

Laurent Pietri  ~ 1 ~ Lycée Joffre - Montpellier 

Physique : DS10 – Savoir Faire 
 
 

I) Corde vibrante (/6) 
Montrer que l’énergie mécanique linéique d’une corde vibrante est de la forme : 𝑒𝑒𝑚𝑚 = 1
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, puis 

établir l’équation de conservation de l’énergie mécanique dans une corde : 𝜕𝜕𝑒𝑒𝑚𝑚
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝑑𝑑𝑑𝑑�𝑅𝑅�⃗ � = 0 où 𝑅𝑅�⃗  est une grandeur que 
l’on nommera et dont on donnera l’expression. 

 
- Densité linéique d’énergie cinétique : 
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- Densité linéique d’énergie potentielle : 
Calculons le travail élémentaire d’un opérateur pour allonger la corde au repos 
de 𝑑𝑑𝑑𝑑 à 𝑑𝑑𝑑𝑑 tel que 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑. 

𝑑𝑑𝐸𝐸𝑝𝑝 = δ𝑊𝑊𝑜𝑜𝑜𝑜 = +𝑇𝑇0𝑑𝑑𝑑𝑑 = +𝑇𝑇0 ��(𝑑𝑑𝑥𝑥)2 + (𝑑𝑑𝑑𝑑)2 − 𝑑𝑑𝑑𝑑�
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- Densité linéique d’énergie mécanique :  

⇒ 𝑒𝑒𝑚𝑚 =
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- Equation de conservation de l’énergie : 
𝜕𝜕𝑒𝑒𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝜇𝜇𝑙𝑙
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D’après l’équation de D’Alembert : 𝜕𝜕²𝑦𝑦
𝜕𝜕𝜕𝜕²

= 𝑐𝑐2 𝜕𝜕
2𝑦𝑦

𝜕𝜕𝑥𝑥2
 ⇒ 𝜇𝜇𝑙𝑙
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On introduit l’opérateur divergence :  
𝜕𝜕𝑒𝑒𝑚𝑚
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+ 𝑑𝑑𝑑𝑑𝑑𝑑 �−𝑇𝑇0 �
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Or : 𝑇𝑇0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑇𝑇0 tan(𝛼𝛼) ~𝑇𝑇0 sin(𝛼𝛼) 
⇒ 𝑅𝑅�⃗ = −𝑇𝑇0 sin(𝛼𝛼) 𝑣𝑣𝑦𝑦𝑢𝑢𝑥𝑥����⃗ = −𝑇𝑇�⃗0. 𝑣⃗𝑣 𝑢𝑢𝑥𝑥����⃗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚é𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

 
II) Ondes sonores (/4) 
Démontrez l’équation de propagation des ondes sonores 
- Euler linéarisé 

Vu que le fluide est parfait et qu’on néglige la pesanteur on a : µ �𝜕𝜕𝑣𝑣�⃗
𝜕𝜕𝜕𝜕

+ �𝑣⃗𝑣.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗ �𝑣⃗𝑣� = −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗  𝑝𝑝 

⇒ �µ0 + µ1�
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+ �𝑣⃗𝑣1.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗ �𝑣𝑣1����⃗���������
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 2 𝑒𝑒𝑒𝑒 𝑣𝑣1

⎠

⎟
⎞

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗  � 𝑝𝑝0⏟
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑝𝑝1� 

On se limite aux termes du premier ordre donc tout produit de deux termes du premier ordre est un deuxième ordre et 
sera négligé d’où : 

µ0
𝜕𝜕𝑣𝑣1����⃗
𝜕𝜕𝜕𝜕

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗  𝑝𝑝1 ⇒ µ0
𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑝𝑝1
𝜕𝜕𝜕𝜕

 = 0 

- Conservation de la masse linéarisée 
Soit : 𝜕𝜕µ

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑(µ𝑣⃗𝑣) = 0 ⇒ 𝜕𝜕(µ0+𝜇𝜇1)

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 ��µ0 + µ1�𝑣⃗𝑣1� = 0 

En se limitant aux termes du premier ordre on a donc : 

⇒ 
𝜕𝜕𝜇𝜇1
𝜕𝜕𝜕𝜕

+ µ0𝑑𝑑𝑑𝑑𝑑𝑑 𝑣⃗𝑣1 = 0 

- Transformation thermodynamique isentropique 
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χ𝑠𝑠 =
1
µ
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⇒ χ𝑠𝑠∼
1
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𝜇𝜇1
𝑝𝑝1

 𝑐𝑐𝑐𝑐𝑐𝑐 µ0 ≫ µ1 

D’où : 
𝜇𝜇1 = 𝜇𝜇0𝑝𝑝1 χ𝑠𝑠 

Les équations de couplage à une dimension donnent : 

⎩
⎪
⎨

⎪
⎧µ0

𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑝𝑝1
𝜕𝜕𝜕𝜕

 = 0   (1)

𝜕𝜕𝜇𝜇1
𝜕𝜕𝜕𝜕

+ µ0
𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

= 0   (2)

𝜇𝜇1 = 𝜇𝜇0 𝑝𝑝1 χ𝑠𝑠  (3)

 

 
Afin de découpler les équations on va calculer : µ0

𝜕𝜕²𝑣𝑣1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 de deux façons : 

(1)⇒ µ0
𝜕𝜕2𝑣𝑣1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= −  
𝜕𝜕2𝑝𝑝1
𝜕𝜕𝑥𝑥2

 

(2)⇒ µ0
𝜕𝜕²𝑣𝑣1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= −
𝜕𝜕²µ1
𝜕𝜕𝜕𝜕²

 

Le théorème de Schwarz affirme que : 
𝜕𝜕²𝑣𝑣1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝑣𝑣1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

D’où : 

 
𝜕𝜕2𝑝𝑝1
𝜕𝜕𝑥𝑥2

=
𝜕𝜕²µ1
𝜕𝜕𝜕𝜕²

 ⇔�
(3)

  
𝜕𝜕2𝑝𝑝1
𝜕𝜕𝑥𝑥2

=
𝜕𝜕²(𝜇𝜇0 𝑝𝑝1 χ𝑠𝑠)

𝜕𝜕𝜕𝜕²
 ⇔ 

𝜕𝜕2𝑝𝑝1
𝜕𝜕𝜕𝜕²

− µ0χ𝑠𝑠
𝜕𝜕²𝑝𝑝1
𝜕𝜕𝜕𝜕²

= 0 

La surpression 𝑝𝑝1 obéit donc à l'équation de d'Alembert, unidimensionnelle : 
𝜕𝜕2𝑝𝑝1
𝜕𝜕𝜕𝜕²

=
1
𝑐𝑐2
𝜕𝜕²𝑝𝑝1
𝜕𝜕𝜕𝜕²

 𝑜𝑜ù 𝑐𝑐 =
1

�µ0χ𝑠𝑠
 

(La masse volumique 𝜇𝜇1 et la vitesse 𝑣𝑣1 vérifient la même équation.) 
 
III) Effet Doppler (/4) 
Effet Doppler. Dans le cas où l’émetteur se déplace à la vitesse 𝑣𝑣0����⃗  par rapport au récepteur. Démontrez le lien entre 

l’écart de fréquence, la fréquence de l’émetteur, 𝑣𝑣0 et c la célérité de l’onde. 

 
 Formalisons cette situation : la distance initiale entre la personne et le haut-parleur est notée 𝑙𝑙0. 

- Le premier bip est émis en 𝑡𝑡0 = 0. Il est reçu en 𝑡𝑡0′ = 𝑙𝑙0
𝑐𝑐
 et ainsi de suite… 

 
N° du Bip Instant d’émission Distance Instant de réception 

Bip 0 𝑡𝑡0 = 0 𝑙𝑙0 𝑡𝑡0′ =
𝑙𝑙0
𝑐𝑐
 

Bip 1 𝑡𝑡1 = 𝑇𝑇 𝑙𝑙1 = 𝑙𝑙0 + 𝑣𝑣0𝑇𝑇 𝑡𝑡1′ = 𝑇𝑇 +
𝑙𝑙1
𝑐𝑐
 

…Bip n-1 𝑡𝑡𝑛𝑛−1 = (𝑛𝑛 − 1)𝑇𝑇 𝑙𝑙𝑛𝑛−1 = 𝑙𝑙0 + 𝑣𝑣0(𝑛𝑛 − 1)𝑇𝑇 𝑡𝑡𝑛𝑛−1′ = (𝑛𝑛 − 1)𝑇𝑇 +
𝑙𝑙𝑛𝑛−1
𝑐𝑐

 

Bip n 𝑡𝑡𝑛𝑛−1 = 𝑛𝑛𝑛𝑛 𝑙𝑙𝑛𝑛 = 𝑙𝑙0 + 𝑣𝑣0𝑛𝑛𝑛𝑛 𝑡𝑡𝑛𝑛′ = 𝑛𝑛𝑛𝑛 +
𝑙𝑙𝑛𝑛
𝑐𝑐
 

 
On déduit la période T' perçue par l'observateur : 

𝑇𝑇′ = 𝑡𝑡𝑛𝑛+1′ − 𝑡𝑡𝑛𝑛′ =  𝑇𝑇 +
𝑣𝑣0𝑇𝑇
𝑐𝑐

= 𝑇𝑇 �1 +
𝑣𝑣0
𝑐𝑐
� 

ainsi que la fréquence mesurée par l'observateur : 

𝑓𝑓′ =
𝑓𝑓

1 + 𝑣𝑣0
𝑐𝑐

 ⇒ 𝑓𝑓′ − 𝑓𝑓 = 𝑓𝑓 �
1

1 + 𝑣𝑣0
𝑐𝑐
− 1� 

Si 𝑣𝑣0
𝑐𝑐
≪ 1 alors on peut écrire : Δ𝑓𝑓~ − 𝑣𝑣0

𝑐𝑐
𝑓𝑓. 
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IV) Klein-Gordon (/4) 
Soit : 𝑟𝑟𝑟𝑟𝑟𝑟������⃗  𝑟𝑟𝑟𝑟𝑟𝑟������⃗  𝐸𝐸�⃗ = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗  �𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸�⃗ � − ∆��⃗ 𝐸𝐸�⃗ = −∆��⃗ 𝐸𝐸�⃗  car 𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸�⃗ = 0 

⇒ 𝑟𝑟𝑟𝑟𝑟𝑟������⃗  �−
𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕
� = −∆��⃗ 𝐸𝐸�⃗  ⇔ −

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟𝑟𝑟𝑟𝑟������⃗ 𝐵𝐵�⃗ � = −∆��⃗ 𝐸𝐸�⃗  

MA ⇒ −
𝜕𝜕
𝜕𝜕𝜕𝜕
�µ0 𝚥𝚥 + ε0µ0

𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕
� = −∆��⃗ 𝐸𝐸�⃗  

 ⇔ − µ0
𝜕𝜕𝚥𝚥
𝜕𝜕𝜕𝜕
−

1
𝑐𝑐2
𝜕𝜕2𝐸𝐸�⃗
𝜕𝜕𝑡𝑡2

= −∆��⃗ 𝐸𝐸�⃗  ⇔  ∆��⃗ 𝐸𝐸�⃗ = µ0
𝜕𝜕𝚥𝚥
𝜕𝜕𝜕𝜕

+
1
𝑐𝑐2
𝜕𝜕2𝐸𝐸�⃗
𝜕𝜕𝑡𝑡2

 

⇔  ∆��⃗ 𝐸𝐸�⃗ −
1
𝑐𝑐2
𝜕𝜕²𝐸𝐸�⃗
𝜕𝜕𝜕𝜕²

= µ0γ
𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕

 

 Pour arriver à l'équation de dispersion, on reporte la forme de l'onde plane progressive monochromatique dans 
l'équation de propagation. On en déduit : 

−𝑘𝑘2𝐸𝐸�⃗ +
ω2

𝑐𝑐2
𝐸𝐸�⃗ = µ0 γ 𝑗𝑗 ω 𝐸𝐸�⃗  

Or : γ = −𝑗𝑗ε0
ω𝑝𝑝2

ω
  ⇒ − 𝑘𝑘2𝐸𝐸�⃗ + ω2

𝑐𝑐2
𝐸𝐸�⃗ = µ0ε0ω𝑝𝑝

2  𝐸𝐸�⃗  

⇒ 𝑘𝑘2 =
ω2 − ωp²

𝑐𝑐2
 

 
V) Klein-Gordon is back (/4) 

- Pour ω < ωp, cela correspond à un vecteur d'onde imaginaire pur : 𝑘𝑘 = ±𝑗𝑗�ω𝑝𝑝2−ω²
𝑐𝑐2

= ±𝑗𝑗𝑘𝑘2 

⇒ 𝐸𝐸�⃗ =  𝐸𝐸0����⃗ 𝑒𝑒𝑗𝑗(ω𝑡𝑡±𝑗𝑗𝑘𝑘2𝑥𝑥) 
En passant à la partie réelle, 

𝐸𝐸�⃗ =  𝐸𝐸0����⃗ e±𝑘𝑘2𝑥𝑥 cos(ω𝑡𝑡) 
On s’intéresse à une onde se « propageant » suivant les x positifs, par conséquent, on conserve l’expression : 𝑘𝑘 = −𝑗𝑗𝑘𝑘2 qui 
entraîne une atténuation de l’onde et non une amplification qui n’est physiquement pas acceptable. 

⇒ 𝐸𝐸�⃗ =  𝐸𝐸0����⃗ 𝑒𝑒−𝑘𝑘2𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐(ω𝑡𝑡) 
 Cette onde est nommée onde évanescente, car celle-ci ne prend de valeurs notables que sur des distances de l'ordre 
de 1

𝑘𝑘2 
 et s'évanouit rapidement au-delà, le tout sans propagation. 

  

- Pour ω > ωp ∶  𝑘𝑘 = ±�ω2−ω𝑝𝑝²
𝑐𝑐2

= ±𝑘𝑘1  

 Le vecteur d'onde est réel et on a une onde plane progressive monochromatique se propageant selon ± 𝑢𝑢𝑥𝑥����⃗  selon le 
sens choisi. On choisit +𝑢𝑢𝑥𝑥����⃗  d’où : 

𝐸𝐸�⃗ =  𝐸𝐸0����⃗ 𝑒𝑒𝑗𝑗(ω𝑡𝑡−𝑘𝑘1𝑥𝑥) 
⇒ 𝐸𝐸�⃗ =  𝐸𝐸0𝑐𝑐𝑐𝑐𝑐𝑐(ω𝑡𝑡 − 𝑘𝑘1𝑥𝑥)  𝑢𝑢𝑦𝑦����⃗  

 


