Devoir a la maison DM9 — Ondes Physique : PC

Physique : DM9

IMPORTANT : La présentation, la lisibilité, 'orthographe, la qualité de la rédaction, la clarté et la précision
des raisonnements entreront pour une part importante dans I’appréciation des copies. En particulier, les résultats
non justifiés ne seront pas pris en compte. Les candidats sont invités a encadrer les résultats littéraux, et a souligner les
applications numériques.

Vers une nouvelle définition du Kelvin

L’actuelle définition de I'unité de température, le kelvin, est fondée sur la valeur du point triple de I'eau, fixé a
la température Tpp = 273,16 K.

Figure 1 Appareil a point triple de 'eau

Pour s’abstraire de la référence a une substance particuliére, en ’'occurrence I'eau, il serait préférable de relier la
définition de 1'unité de température & des constantes fondamentales. Ainsi, dans la future définition du systéme
international d’unités, il est envisagé de fixer une valeur numérique exacte de la constante de Boltzmann &p. Le
kelvin serait alors défini par

Le kelvin est 'unité de température thermodynamique ; son amplitude est déterminée en

fixant la valeur numérique de la constante de Boltzmann A exactement 1,3806xz x 10723

lorsqu’elle est exprimée en s~2.m?%kg K1, unité du SI égale au J. K.
Le symbole z2 désigne les chiffres qui entreront dans le choix de kg et qui seront fixés par l'incertitude atteinte
dans plusieurs expériences en cours de développement. Par conséquent, la mesure d'une température ne portera
plus sur T seul, mais sur le produit kg7, lui-méme relié au métre, & la seconde et au kilogramme. Pour que le
choix de la valeur exacte de kjp soit pertinent, il est essentiel que les mesures actuelles de kj soient réalisées
a laide d’expériences faisant appel a des lois physiques différentes. Ce probleme étudie plusieurs méthodes de
mesure de cette constante.
La constante des gaz parfaits R est liée a la constante de Boltzmann kg et a la constante d’Avogadro N 4 par
R=N,kpg.
Les différentes parties de ce probléme sont indépendantes. Une liste de données utiles et un formulaire figurent
en fin d’énoncé.

I L’agitation thermique

I.A — L’agitation thermique dans l’atmosphére

I.A.1) On déerit le champ de pression d’'une atmospheére isotherme de température 7' dans un champ de
pesanteur uniforme §. Le modéle de fluide est celui du gaz parfait ; la masse molaire du gaz est M. A laltitude
nulle z = 0, la pression est F,, la densité volumique de molécules est N,,.

a) Etablir, & partir de ’équilibre d’un domaine d’atmosphére, I'expression de la pression P (2).

b) En déduire 'expression de la densité volumique n,(2) = Njexp ( z) en fonction de laltitude, ot m

mg
kpT
est la masse d’une molécule. Que représente le terme mgz pour une molécule 7
I1.A.2) Déduire de la loi précédente une hauteur caractéristique H de ’atmosphére, en fonction de kg, T, m
et g. Quelle vitesse v, atteindrait une molécule en chute libre tombant de la hauteur H sans vitesse initiale 7

. . : ; 3kgT , R
Comparer v, a la vitesse quadratique moyenne v, donnée par vg = ZB7 de cette molécule dans un gaz a la
m

température 7T'.
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I.A.3) Les molécules de I'atmospheére gardent une agitation incessante. Pourtant, 'expérience de la vie cou-
rante montre qu’'une balle qu’on lance finit par s’immobiliser, aprés éventuellement quelques rebonds.

Y a-t-il vraiment immobilisation absolue de la balle ?

I.B —  L’agitation thermique dans un circuit électrique

I.B.1) Dans un métal & la température T, les électrons libres forment un gaz circulant dans le réseau cristallin
des cations. Peut-on utiliser la. physique non relativiste pour décrire les électrons libres & température ambiante 7

L’agitation thermique des électrons libres est responsable de fluctuations de I'intensité électrique traversant un
circuit, appelées bruit thermique. Ainsi, méme en I'absence de générateur, il apparait dans un circuit fermé
comportant une résistance, i toute température 7' non nulle, une intensité i(¢) et une tension wu(t) fluctuantes.
Il s’agit ici d’établir 'expression, appelée formule de NYQUIST, de la valeur efficace de cette tension d’origine
thermique.

I.B.2)  Soit le circuit formé d’un condensateur de capacité C et d’une bobine idéale d’'inductance L (figure 2).

Figure 2 Circuit LC

Etablir deux relations indépendantes entre les grandeurs temporelles u,, u,, i,, i, et leurs dérivées.

I.B.3) Pour étudier les fluctuations de tension et d’intensité liées au bruit thermique dune résistance, on
place & la suite de celle-ci une ligne électrique bifilaire constituée de deux fils paralleles. Cette ligne est repérée
par 'axe Oz. On considére dans cette question une portion de ligne de longueur infinitésimale da et on note
respectivement A et + les inductance et capacité linéiques de cette ligne (figure 3).

u(x, t) vydz == u(x + dz, t)

Figure 3 Schéma électrique d’une portion de ligne de
longueur dx

a) Etablir deux équations aux dérivées partielles indépendantes reliant les fonctions u(z,t) et i(x,t), A et 7.

b) En déduire I'équation de propagation pour la seule fonction u(x,t). Donner expression de la célérité ¢, des
ondes en fonction de A et .

c) Soient u(x,t) = Uexpi(wt—kx) et i(z,t) = I expi(wt —kz) les solutions harmoniques en notation complexe.
Etablir ’équation de dispersion de la ligne. On appelle résistance caractéristique de la ligne le rapport R.=U/IL
Exprimer A et v en fonction de la célérité ¢, et de R..

1.B.4) La ligne précédente a pour longueur D. Elle est fermée a ses deux extrémités par un court-circuit
(figure 4) apres avoir été alimentée par un générateur de tension.

u(z,t)

(@] & D
Figure 4 Ligne court-circuitée

a) On cherche les solutions u(x,t) pouvant exister sur la ligne fermée sous forme de modes propres

w(x,t) = U(x) cos(wt)

Etablir 'équation différentielle régissant U(x).
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Montrer, en précisant les conditions aux limites, que les solutions s’écrivent
Ulz) = Uy, sin(K,,2)

ou K, est proportionnel a un entier n appelé l'ordre du mode et Uy, une constante quelconque. En déduire les
pulsations w,, des modes propres en fonction de n, D et ¢,.

b) Dans un intervalle de fréquence de largeur Af, quel est le nombre N de modes propres 7 On supposera que
Af est suffisamment grand pour que N soit grand devant 1 (N > 1).

¢) Soit u, (x,t) le mode propre d’ordre n d’amplitude U,,. Quelle est Pexpression de U'intensité 4,,(x, ¢) du mode
d’ordre n, en fonction de Uy, n, R., D et w, 7 On prendra l'intensité nulle pour Uy, = 0.

I.B.5)

a) Donner I'expression de I'énergie de, (z,t) emmagasinée dans le trongon de ligne entre les abscisses @ et
x + dz pour le mode d’ordre n, en fonction de Uy,,, v, A, K,, et w,,. Exprimer sa moyenne temporelle (de,,)(x).
Commenter.
b) En déduire I'énergie moyenne (E, ) du mode d’ordre n dans la ligne entiére en fonction de U,,,, R, ¢, et D.
I.B.6) Les modes propres sont générés par l'agitation thermique dans la résistance branchée a Ientrée de la
ligne, qui est ensuite remplacée instantanément par un court-circuit. Le transfert d’énergie entre la résistance
et la ligne est réalisé lorsque la résistance caractéristique R, de la ligne est égale & la résistance R. Dans ce cas,
on montre qu’en moyenne, I’énergie du mode d’ordre n est (E,) = kgT.
a) En déduire 'expression du carré de la valeur efficace ufffn(:z:) de la tension du mode d’ordre n au point z,
; 2 D — 72 ain? . 4
en fonctl(?n de R, D, c,, kgetT. Montr-er que uZy () =UzZ sin®(K,x) ol Uy, est une constante, appelée
valeur efficace du mode n, qu’on déterminera.
b) Les carrés des valeurs efficaces des différents modes s’ajoutent. En déduire que la valeur efficace Uy corres-
pondant aux modes dont les fréquences sont comprises dans 'intervalle de fréquence de largeur A f est donnée
par la formule de NYQUIST

Ut = VAkgTRAS

I.B.7) Les modes propres générés par la résistance sont mesurés par une chaine électronique schématisée
ci-dessous (figure 5).

Amplificateur Filtre
R u(t) de tension passe-bande v(t) Voltmetre
A Af

J

Figure 5 Mesure de la tension efficace de bruit thermique

On trace (figure 6) la valeur efficace v 4 mesurée par le voltmetre en fonction de la résistance pour deux valeurs
de la bande passante Af, pour A =500 et 7' = 300 K.

5o 2
105 Af =10°Hz
Af=1Hz

10-6
=
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Figure 6 Valeurs efficaces v (R)
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a) Montrer que ces courbes sont compatibles avec la formule de NYQUIST. En déduire un ordre de grandeur de
la constante de Boltzmann.
b) Pourquoi faut-il protéger le montage expérimental par une enceinte métallique ?

Une mesure précise nécessite plusieurs jours d’acquisition. Quels sont alors les facteurs qui peuvent en limiter
la précision 7

IT Mesure acoustique

La méthode consiste & mesurer la vitesse des ondes acoustiques dans un gaz, I’argon, en utilisant un résonateur
sphérique de rayon a. Ces mesures sont effectuées & la température T du point triple de 'eau, pour des
pressions statiques allant de 0,5 & 7 bar.

II.A — Principe
On considére une onde acoustique plane, se propageant selon 'axe cartésien Ox. Cette onde est décrite par le
champ de surpression 7(z,t), le champ eulérien des vitesses @(x,t) = v(z,t) €, et le champ de masse volumique
u(w,t). Le milieu de propagation est un fluide caractérisé par sa masse volumique statique g, sa pression
; 1 /0u

statique F, et sa compressibilité isentropique xg = — (—l) ;

p\OP/ ¢
IT.A.1) A latempérature Tpp = 273,16K, quel est I'ordre de grandeur de la pression Py, en dessous de laquelle
un gaz réel peut étre décrit par le modele du gaz parfait 7 On considérera que les interactions intermoléculaires

ont une portée de 'ordre de 5nm et quun gaz est parfait si les distances moyennes entre molécules sont
supérieures a la portée de l'interaction.

I1.A.2)

a) Etablir, dans le cadre de approximation acoustique, 1'équation de d’Alembert vérifiée par la surpression
m(x,t). En déduire 'expression de la célérité c, des ondes acoustiques en fonction de g et xg.

1/0
b) Exprimer la compressibilité isotherme xy, = — (a—;) d’un gaz parfait.
M T

On montre que yg = X—T, ol 7 est le coefficient de Laplace. En déduire que
’)/

2 _ AN akpT

€ M

ol M est la masse molaire du gaz et T la température absolue.
¢) Pour un gaz réel, la célérité des ondes acoustiques est donnée, au premier ordre par rapport & la pression P,
par

2 _ AN akgT

¢ 45~ (1+BP)

ol 8 =1,3 x 1071 Pa~! pour 'argon.
Pour quelles valeurs de la pression la célérité des ondes acoustiques dans 'argon ne s’écarte-t-elle pas de celle
d’un gaz parfait de plus de 107% en valeur relative ?

II.A.3) L’incertitude relative sur kg doit étre au plus égale a 2 x 107°%. Le tableau ci-dessous donne les valeurs
et incertitudes relatives de diverses grandeurs, dont la masse molaire de 'argon (My,) et son coefficient de
Laplace (7y,,)-

Valeur Incertitude relative
N4 = 6,02214086 x 102 mol ! 1,2 x 1078

My, = 39,947 85 g-mol ! 1,5 x 107

Yar =5/3 0
T=Tpp=273,16 K 3x 1077

Déterminer 'expression de 'incertitude relative k—B en fonction des incertitudes relatives des autres grandeurs.
B

e

P dc
Quelle est la valeur maximale admissible de l'incertitude relative de la célérité des ondes acoustiques —= dans
a
Pargon a la température Tpp 7
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II.B — L’onde acoustique sphérique

FEn raison de la forme du résonateur, on étudie les ondes sonores qui possedent la symétrie sphérique. En
particulier, le champ de surpression s’écrit m(r, t) et le champ des vitesses ¥(r, t) = v(r, t) €, ot r est la coordonnée
sphérique radiale et €, le vecteur unitaire associé.

II.B.1) Equation du potentiel

a) Montrer qu’on peut définir un potentiel des vitesses ¢(r,t). Relier une dérivée partielle du potentiel au champ
de surpression et a la masse volumique pg, en considérant le potentiel identiquement nul si 7(r,t) = 0 quel que
soit le temps t.

b) La surpression obéit a I'équation de d’Alembert généralisée

2
An(r,t) — C%%Tg(r,t) —0

Montrer que le potentiel des vitesses vérifie la méme équation.

On cherche des solutions de la forme ¢(r,t) = f(r) cos(wt), appelées modes propres radiaux.

II.B.2) Les ondes sont confinées dans le résonateur (de rayon a).

Quelle en est la conséquence sur 'ensemble des pulsations w admissibles ?

Les parois du résonateur sont supposées ici indéformables. En déduire une condition aux limites que 1’'on expri-
mera sur f(r) ou ses dérivées.

II.B.3) Le vecteur densité de courant énergétique est défini par J,(r,t) = n(r,t) 0(r, t).

Exprimer j_(r,t) en fonction de f, f/, po et w.

Interpréter la valeur moyenne (7, ).

I1.B.4) Montrer que la fonction rf(r) vérifie une équation classique dont on donnera les solutions, en posant
w
k=—.
CG.
L’amplitude des ondes doit étre définie en tout point du volume du résonateur ; en déduire I'expression du
potentiel ¢(r,t) & une constante multiplicative pres.
II.B.5) Donner l'expression de la fréquence de résonance v, des modes propres radiaux en fonction de la
vitesse du son ¢,, du rayon a du résonateur et de la n-iéme racine non nulle x,, d’une fonction a préciser.

II.B.6) La précision exigée sur la valeur ¢, nécessite des incertitudes sur la mesure du rayon a du résonateur
et de la fréquence des modes suffisamment faibles. Les valeurs de ces grandeurs et leurs incertitudes relatives
sont tabulées ci-dessous.

Valeur Incertitude relative
a=50009087 x 102 m 1,8 x 107°
v, = 4,402004 068 x 10® Hz 5 x 107
x; = 4,493409 457 91 2x 1071

: a5 gore dc
En déduire la valeur de la célérité ¢, et l'incertitude relative —*. L'incertitude dc, est-elle acceptable 7
CCL

II.B.7) Calculer la valeur de la constante de Boltzmann kp déterminée par cette mesure, ainsi que son in-
ok
certitude relative —2 et son incertitude absolue dk pg. Combien de chiffres significatifs peut-on fixer par cette

B
mesure ?
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Données numériques

Célérité de la lumiere dans le vide c=299792458 m-s !

Charge élémentaire e=1,602176621 x 10717 C

Constante d’Avogadro N, =6,02214086 x 1022 mol™?

Constante de Planck h = 6,626 070040 x 1073 J-s
h=h/2m =1,054571800 x 10734 J-s

Masse de I’électron m, = 9,109383 56 x 103! kg

Masse de 'atome d’hydrogene myg = 1,67372 x 10727 kg

Masse molaire de 'ammoniac Myy, = 17,031 g-mol™!

Température du point triple de 'eau  Tpp = 273,16 K

Formulaire
cosp + cos g = 2 cos p_—;— 9 cos p_; A cosp —cosq = —2sin p—; 9 sin p_; g
. sin(kx)
ty S =
Moyenne d’une fonction
/2
— lim 4
(= tm L[ raa
—7/2
Moyenne quadratique (ou valeur efficace)
foie = \/(f?)

Composition des incertitudes

2 2
Si f = g“hP et g et h sont indépendants, alors 6—; = \/az (@) + (32 (@)

Laplacien scalaire d’une fonction de la variable radiale sphérique r

_19%(rf(r)
Af(r)= T2

Gradient en coordonnées sphériques

grad V = 8V§T+ %av_’a_'_ LoV

Rotationnel en coordonnées sphériques

. 1 (B(SinﬁA(‘o) B aAe) . +( 1 0A, %a(m@))éﬁ

3=

(B(TAB) B aAr) ‘.

rot A = 7 sin 0 00 Op o or od

Rotationnel du rotationnel

rot(rot A) = grad(div A) — AA

oo o[[Ne o e
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