Sciences Physiques: PCSI 2

XVI-1 Energie échangée par un système

La thermodynamique des systèmes à l'équilibre s'intéresse à des transformations d'un système thermodynamique d'un état d'équilibre à un autre. Dans ce chapitre on va définir différents types de transformations. On va ensuite s'intéresser aux deux types d'échanges d'énergie que le système peut avoir avec l'extérieur au cours d'une transformation : le travail et le transfert thermique.

- I Transformation thermodynamique
- I-1) Transformation, état initial, état final

On appelle transformation thermodynamique le passage d'un système thermodynamique d'un état d'équilibre, appelé état initial, à un nouvel état d'équilibre, appelé état final.

Lorsqu'on étudie une transformation thermodynamique il faut toujours bien préciser le système Σ considéré. Celui-ci devra toujours être un système fermé.

Pour provoquer la transformation d'un système Σ il faut imposer à Σ une modification d'une de ses variables d'état ou bien changer les conditions extérieures. On met ainsi le système hors d'équilibre et il évolue vers un nouvel état d'équilibre.

On connaît toujours l'état d'équilibre initial. Comment détermine-t-on l'état d'équilibre final ? On obtient des renseignements sur les variables d'état finales en appliquant :

- La condition d'équilibre mécanique,
- La condition d'équilibre thermique (sauf si la transformation est trop rapide pour qu'il s'établisse),
- La condition d'équilibre de diffusion dans le cas d'un système diphasé,

- Les équations d'état des différentes phases existant dans le système.

Ces différents renseignements ne sont pas toujours suffisants. Il faut parfois utiliser d'autres informations concernant la transformation. Celle-ci peut avoir différentes propriétés que l'on va définir maintenant.

I-2) Différents types de transformations

a) Transformation isochore

Une transformation est isochore quand le volume du système est constant au cours de la transformation.

En notant V_i , V_f et V le volume du système respectivement dans l'état initial, dans l'état final et dans un état intermédiaire quelconque au cours de la transformation, on a : $V_i = V = V_f$.

Un système enfermé dans un récipient rigide indéformable subit des transformations obligatoirement isochores. Lorsque la transformation est isochore on connaît a priori le volume dans l'état final.

b) Transformation isobare

Une transformation est isobare quand la pression du système est définie tout au long de la transformation et garde une valeur constante.

En notant P_i , P_f et P la pression du système respectivement dans l'état initial, dans l'état final et dans un état intermédiaire quelconque au cours de la transformation, on a : $P_i = P_f = P$

En pratique une transformation isobare est une transformation assez lente, dans laquelle on impose de l'extérieur sa pression au système.

c) Transformation monobare

Une transformation monobare est une transformation au cours de laquelle la pression exercée par le milieu extérieur sur les parois mobiles du système garde une valeur P_o constante :

$$P_{ext} = P_{O}$$
.

d) Transformation isotherme

Une transformation est isotherme quand la température du système est définie tout au long de la transformation et garde une valeur constante.

En notant T_i , T_f et T la température du système respectivement dans l'état initial, dans l'état final et dans un état intermédiaire au cours de la transformation, on a : $T_i = T = T_f$

Ces conditions sont très contraignantes et difficilement réalisables en pratique. La transformation isotherme est une transformation théorique idéale.

e) Transformation monotherme

Une transformation monotherme est une transformation au cours de laquelle le milieu extérieur avec lequel le système échange de l'énergie par transfert thermique a une température To constante :

$$T_{ext} = T_{o}$$

Une transformation isotherme est obligatoirement monotherme s'il y a un transfert thermique.

Si le système est en contact thermique avec ce milieu extérieur dans l'état final, la condition d'équilibre thermique impose : $T_f = T_o$.

I-3) Influence du choix du système

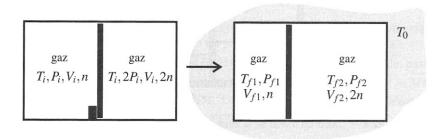
Pour interpréter une expérience on a parfois le choix entre plusieurs systèmes possibles. Suivant le système choisi, la transformation n'a pas les mêmes propriétés.

Pour illustrer ceci on considère l'expérience représentée sur la figure : une enceinte indéformable est séparée en deux compartiments par une cloison étanche et mobile. Dans l'état initial les deux compartiments contiennent des échantillons de gaz : les variables d'état initiales du gaz contenu dans le compartiment 1 sont (T_i,P_i,V_i,n) , pour le gaz contenu dans le compartiment 2 elles valent (T_i,2P_i,V_i, 2n) et une cale bloque la cloison mobile.

On enlève la cale et on place l'enceinte dans un environnement à température T_o . Quelles sont les variables d'état des gaz dans l'état d'équilibre final ?

Dans l'état final on doit avoir :

- Equilibre thermique avec l'extérieur, donc les températures dans les deux compartiments sont : $T_{fi} = T_{f2} = T_{o}$,
- Equilibre mécanique de la cloison mobile, donc des pressions égales dans les deux compartiments : $P_{f1} = P_{f2}$.



Transformation d'un système composé.

Par ailleurs, le volume total de l'enceinte étant invariable :

$$V_{f1} + V_{f2} = 2V_i$$

Enfin l'équation d'état des gaz parfaits donne :

$$P_{f1}V_{f1} = nRT_{f1}$$
 et $P_{f2}V_{f2} = 2nRT_{f2}$.

Étant donné que : T $_{\mathrm{fi}}$ = T $_{\mathrm{f2}}$ = T $_{\mathrm{o}}$ ceci entraîne que : $V_{f2} = 2V_{f1}$

On en déduit :

$$V_{f1} = \frac{2}{3}V_i \ et \ V_{f2} = \frac{4}{3}V_i \ et \ P_{f1} = P_{f2} = \frac{3}{2V_i}nRT_0$$

Pour qualifier la transformation il faut préciser quel est le système considéré : soit le gaz contenu dans le compartiment 1 (système Σ_1), soit le gaz contenu dans le compartiment 2 (système Σ_2), soit tout ce qui se trouve à l'intérieur de l'enceinte (système Σ).

La transformation du système Σ est isochore et monotherme. Mais la transformation du système Σ_1 (ou Σ_2) n'a aucune propriété remarquable. Elle n'est pas monotherme car Σ_1 et Σ_2 peuvent a priori avoir un échange thermique à travers la paroi mobile qui les sépare (et ils n'ont pas des températures constantes). Toutefois, si cette paroi est suffisamment épaisse pour qu'on puisse négliger cet échange thermique, les transformations de Σ_1 et Σ_2 sont monothermes.

II - Travail des forces de pression

II-1) Convention

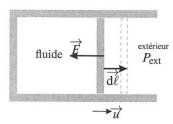
Au cours d'une transformation, un système échange généralement de l'énergie avec l'extérieur. D'une manière générale :

Les échanges d'énergie d'un système sont toujours exprimés en valeur algébrique : ils sont positifs lorsque le système choisi reçoit de l'énergie et négatifs lorsqu'il en cède.

Dans ce paragraphe on s'intéresse à l'énergie reçue par un système grâce aux forces de pression. Cette énergie n'est autre que le travail de ces forces .

- II-2) Expression générale du travail de la pression extérieure
 - a) Travail élémentaire des forces de pression dans le déplacement d'un piston

On considère dans ce paragraphe un fluide contenu dans un cylindre indéformable fermé par un piston mobile. On prend pour système Σ l'ensemble {fluide + piston}.



Calcul du travail de la force de pression \overrightarrow{F} s'exercant sur le piston.

La pression $P_{\rm ext}$ régnant à l'extérieur du système applique au piston une force $\vec{F}=-P_{ext}S~\vec{u}$ où S est la surface du piston et \vec{u} un vecteur unitaire perpendiculaire à la surface du piston dirigé de l'intérieur du système vers l'extérieur. Pour un déplacement \vec{dl} élémentaire du piston, le travail élémentaire de cette force s'écrit :

$$\delta W = \vec{F} \cdot \vec{dl} = dl\vec{u} \cdot (-F\vec{u}) = -P_{ext}Sdl$$

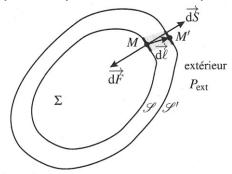
Or Sdl est le volume balayé par le piston dans son déplacement, et aussi la variation algébrique dV du volume V du système Σ (on se convainc facilement en observant la figure que dV>0 pour dl> 0 et inversement). Ainsi :

$$\delta W = -P_{ext}dV$$

b) Généralisation du résultat précédent

On considère de manière plus générale un système Σ soumis à une pression extérieure P_{ext} uniforme (c'est-à-dire identique en tous les points de la surface du système). On suppose que la frontière du système se déforme de manière infinitésimale, passant de S à S' : tout point M de S se déplace en un point M' de S' et on note :

 $\overrightarrow{dl} = \overrightarrow{MM'}$ le petit déplacement de ce point.



Calcul du travail de la force de pression, dans le cas général. Le volume en gris est égal à $\overrightarrow{d\ell} \cdot \overrightarrow{dS}$.

La force exercée par l'extérieur sur l'élément de surface \overrightarrow{dS} est $\overrightarrow{dF} = -P_{ext}\overrightarrow{dS}$ et son travail élémentaire dans ce déplacement est $\delta^2 W = \overrightarrow{dF}.\overrightarrow{dl} = -P_{ext}\overrightarrow{dS}.\overrightarrow{dl} = -P_{ext}d^2V$

Le 2 en exposant dans la notation $\delta^2 W$ est là pour rappeler que ce travail est doublement élémentaire : parce que le vecteur surface est élémentaire et parce que le déplacement est élémentaire.

Ainsi le travail des forces de pression s'exerçant sur toute la surface du système est :

$$\delta W = \int_{M \in S} -P_{ext} d^2 V = -P_{ext} dV$$

où dV est le volume compris entre S et S', soit la variation élémentaire de volume du système. On retrouve l'expression précédente qui est donc valable dans un cas plus général.

Dans ce calcul, pour sortir P_{ext} de l'intégrale, on a utilisé l'hypothèse selon laquelle cette pression est uniforme, donc identique en tous les points de la surface du système. Cette hypothèse sera supposée vérifiée dans toute la suite du chapitre sauf dans le paragraphe ci-dessous.

c) Travail des forces de pression reçu par un système dans une transformation

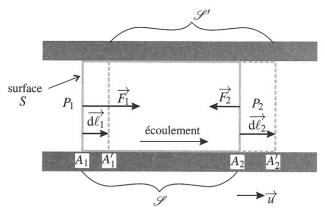
Lors d'une transformation d'un système entre un état initial i et un état final f, le travail des forces de la pression extérieure sur le système est :

$$W = \int_{EI}^{EF} \delta W = -\int_{EI}^{EF} P_{ext} dV$$

Il faut bien comprendre la signification physique du signe « — » dans cette formule. Il s'agit du travail reçu par le système constitué par le gaz. Il est positif lorsque le volume du gaz diminue (dV < 0) : il faut fournir un travail pour comprimer un gaz dans un volume plus petit (on expérimente très clairement ce résultat lorsqu'on gonfle un pneu de vélo). Inversement, un gaz qui se détend en augmentant de volume (dV > 0) reçoit un travail négatif de l'extérieur, donc en fait fournit du travail.

II-2) Cas particulier d'un fluide en écoulement

Lorsque la condition d'application de la formule n'est pas vérifiée il faut revenir à la définition du travail d'une force vue en mécanique. Dans ce paragraphe on étudie le cas important où le système est un volume de fluide en écoulement dans une conduite.



Calcul du travail des forces de pression, dans le cas d'un écoulement dans un conduite.

Soit un fluide s'écoulant dans une conduite dont la section a une surface S. Dans ce fluide, on isole par l'esprit un système fermé Σ constitué par le fluide contenu dans la surface S comprise entre les sections A_1 et A_2 de la conduite à l'instant t. A l'instant t'=t+dt le système Σ (donc le même fluide) est contenu dans la surface e comprise entre les sections A_1' et A_2' .

On appelle $\overrightarrow{dl_1} = \overrightarrow{A_1}\overrightarrow{A'_1}$ et $\overrightarrow{dl_2} = \overrightarrow{A_2}\overrightarrow{A'_2}$ les déplacements élémentaires entre t et t+dt des deux sections délimitant le système.

La pression en A_1 est égale à P_1 et elle est égale à P_2 en A_2 .

On note S la surface de la section de la conduite. La force de pression exercée appliquée à Σ sur la section A_1 s'écrit :

 $\overrightarrow{F_1} = P_1 S \ \overrightarrow{u}$ où \overrightarrow{u} est le vecteur unitaire dans le sens de l'écoulement.

Elle fournit dans le déplacement considéré le travail :

$$\delta W_1 = \overrightarrow{F_1}.\overrightarrow{dl_1} = P_1 S \overrightarrow{u}.\overrightarrow{dl_1} = P_1 dV_1$$

où dV_1 est le volume compris entre les section A_1 et A'_1 , volume balayé par la surface limitant le système. Ce travail est positif : le fluide en amont pousse le fluide de Σ .

La force de pression exercée appliquée à Σ sur la section A_2 s'écrit : $\overrightarrow{F_2} = -P_2S \overrightarrow{u}$ d'où :

$$\delta W_2 = -P_2 dV_2$$

Ce travail est négatif : le fluide en aval repousse le fluide de Σ .

Au total, le travail des forces de pressions est dans ce cas :

$$\delta W = P_1 dV_1 - P_2 dV_2$$

On ne peut pas appliquer la formule précédente parce que la pression extérieure a ici deux valeurs différentes sur la surface du système.

- II-3) Travail des forces de pression dans deux cas particuliers
 - a) Cas d'une transformation isochore

Pour une transformation isochore, le volume ne variant pas dV=0, donc le travail élémentaire est nul : $\delta W = 0$.

Au cours d'une transformation isochore le travail des forces de pression est nul.

b) Cas d'une transformation monobare

Dans le cas d'une transformation monobare, $P_{ext} = P_o$ où P_o est une constante.

Le travail élémentaire des forces de pression s'écrit alors :

$$\frac{\delta W = -P_0 dV}{\sim 10 \sim}$$

Sur la transformation complète entre l'état initial i et l'état final f, le volume varie entre le volume initial V_i et le volume final V_f , et le travail des forces de pression est :

$$W = -P_0(V_F - V_I)$$

Le travail des forces de pression au cours d'une transformation monobare telle que

$$P_{ext} = P_0 \ est : W = -P_0(V_F - V_I) = -P_0 \Delta V$$

c) Cas d'une transformation isobare

Si la transformation est isobare et que le volume varie, elle est obligatoirement monobare et $P = P_{ext} = P_o$. Le résultat précédent s'applique donc :

Le travail des forces de pression au cours d'une transformation isobare est :

$$W = -P(V_F - V_I) = -P\Delta V$$

II-4) Travail des forces de pression dans le cas d'une transformation mécaniquement réversible

a) Expression du travail

Une transformation mécaniquement réversible est une transformation au cours de laquelle la pression P du système est définie à chaque instant et toujours égale à la pression extérieure, soit : $P=P_{\rm ext.}$

Dans le cas d'une transformation mécaniquement réversible le travail des forces de pression s'exerçant sur le système s'écrit :

$$W = -\int_{i}^{f} P dV$$

où P est la pression dans le système.

b) Interprétation géométrique

Le travail des forces de pression s'interprète géométriquement dans le diagramme de Clapeyron, diagramme (P, V) avec la pression du système P en ordonnée et son, volume V en abscisse.

On représente la courbe suivie par le système dans sa transformation entre le point (P_i, V_i) représentant l'état initial et le point (P_f, V_f) représentant l'état final. Sauf exception, cette courbe ne passe pas deux fois par la même valeur de V et c'est donc la représentation d'une fonction P(V).

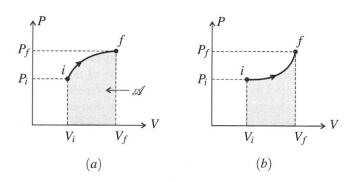
Le travail $W=-\int_i^f PdV$ est au signe près, d'après, une propriété classique de l'intégrale, l'aire comprise entre la courbe de la fonction P(V) et l'axe des abscisses, aire grisée sur la figure.

La valeur absolue du travail des forces de pression est égale à l'aire A comprise entre la courbe représentant la transformation du système dans le diagramme de Clapeyron et l'axe des abscisses.

Le travail algébrique est :

W = +A si $V_f < V_i$ (le gaz reçoit du travail si son volume diminue),

 $W = -A \operatorname{si} V_f > V_i$ (le gaz cède du travail si son volume augmente).

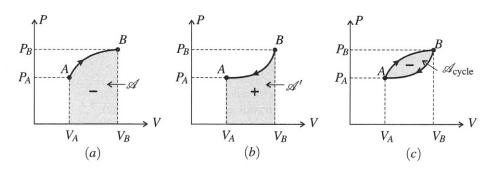


Interprétation géométrique du travail des forces de pression.

D'autre part, les figures montrent deux transformations différentes menant de l'état i à l'état f et représentées par deux courbes différentes. Les aires sous ces deux courbes sont différentes, donc le système ne reçoit pas le même travail dans les deux transformations qui vont pourtant du même état initial au même état final. On constate donc que :

Le travail de pression dépend de la transformation entre l'état initial et l'état final.

c) Travail reçu par le système au cours d'une évolution cyclique On s'intéresse à une transformation cyclique du système au cours de laquelle il passe d'un état A à un état B, puis revient à l'état A par un autre chemin : A → B → A.



Travail des forces de pression reçu par un système au cours d'un cycle.

On suppose pour fixer les idées que $V_B > V_A$. Le travail reçu par le système est négatif lors de la transformation $A \to B$ soit $W_{B\to A}$ =-A où A est l'aire sous la courbe suivie par le point représentatif du système dans le diagramme de Clapeyron.

Le travail est positif lors de la transformation $B \to A$ soit $W_{B\to A}$ =+A' en notant l'aire sous la courbe suivie. Le travail algébrique reçu par le système sur le cycle,

$$W_{cycle} = W_{B\rightarrow A} + W_{B\rightarrow A} n'est pas nul.$$

Il est égal en valeur absolue à l'aire A_{cycle} entourée par le chemin du cycle dans le diagramme de Clapeyron.

Sur la figure le cycle est décrit dans le sens des aiguilles d'une montre et W <0. Il aurait été positif si le cycle avait été parcouru dans l'autre sens.

Le travail W des forces de pression reçu par un système au cours d'un cycle est négatif lorsque le cycle est décrit dans le sens horaire dans le diagramme de Clapeyron. Dans ce cas le système fournit du travail, Un tel cycle est appelé cycle moteur.

Le travail W des forces de pression reçu par un système au cours d'un cycle est positif lorsque le cycle est décrit dans le sens trigonométrique dans le diagramme de Clapeyron. Dans ce cas le système reçoit du travail. Un tel cycle est appelé cycle récepteur.

Dans les deux cas, la valeur absolue du travail échangé par le système est égale à l'aire de la surface délimitée par le cycle :

$$|W| = A_{cycle}$$

- d) Exemples de calculs pour un échantillon de gaz parfait
- Transformation isotherme mécaniquement réversible

Dans le cas d'une transformation isotherme la température T du système reste constamment égale à $T_o = T_i = T_f$. On peut donc écrire en appliquant l'équation d'état du gaz parfait :

$$PV = nRT = nRT_0 d'où P = nRT_0/V$$

Le travail
$$W=-\int_{i}^{f}PdV=-\int_{i}^{f}\frac{nRT_{0}dV}{V}=-nRT_{0}Ln\left(\frac{V_{f}}{V_{i}}\right)$$
 De plus $P_{f}V_{f}=P_{i}V_{i}\Rightarrow W=nRT_{0}Ln\left(\frac{P_{f}}{P_{i}}\right)$

- Transformation polytropique mécaniquement réversible

Une transformation polytropique est une transformation au cours de laquelle la pression (définie à chaque instant) et le volume vérifient une relation de la forme PV^k = constante, où k est un exposant dépendant de la transformation. Comme une augmentation de volume s'accompagne naturellement d'une diminution de pression, l'exposant k est positif.

La pression P au cours de la transformation vérifie donc : $PV^k = P_iV_i^k$ soit $P = P_i \left(\frac{V_i}{V}\right)^k$

Le travail reçu par le système s'écrit ainsi :

$$W = -\int_{i}^{f} P dV = -\int_{i}^{f} P_{i} \left(\frac{V_{i}}{V}\right)^{k} dV = -P_{i} V_{i}^{k} \int_{i}^{f} V^{-k} dV$$

$$\Leftrightarrow W = -P_{i} V_{i}^{k} \frac{V_{f}^{-k+1} - V_{i}^{-k+1}}{1 - k}$$

En utilisant $P_fV_f^k = P_iV_i^k$ et l'équation d'état du gaz parfait, on peut mettre ce résultat sous deux forme simples :

$$W = \frac{P_f V_f - P_i V_i}{k - 1} = \frac{nR\Delta T}{k - 1}$$

III - Transfert thermique

III-1) Définition

Un système thermodynamique peut recevoir de l'énergie sans l'intervention d'une action mécanique mesurable à l'échelle macroscopique. Ce transfert d'énergie complémentaire du travail mécanique s'appelle transfert thermique.

La quantité d'énergie échangée entre un système E et l'extérieur par transfert thermique est notée Q. Elle est algébrique et, par convention, positive lorsque Σ reçoit de l'énergie. Le transfert thermique Q est parfois appelée chaleur. Il se mesure en joules.

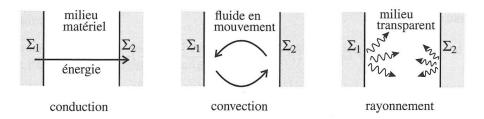
III-2) Les trois modes de transfert thermique

Le transfert thermique s'opère entre deux systèmes en contact si leurs températures sont différentes. Le système dont la température est la plus élevée cède de l'énergie au système dont la température est la plus basse. Ce transfert d'énergie se passe à l'échelle microscopique et il n'est perceptible à l'échelle macroscopique que par la transformation des systèmes qu'il provoque : variation de température, changement d'état...

Il existe trois modes de transfert thermique, schématisés sur la figure:

- La conduction thermique est le mode de transfert thermique entre deux systèmes séparés par un milieu matériel immobile, par exemple une paroi solide. Le transfert d'énergie résulte des collisions entre les particules microscopiques constituant les systèmes et la paroi. Ces particules sont animées d'un mouvement d'agitation thermique quelle que soit la nature (solide, liquide ou gaz) des systèmes. Les particules du système ayant la température la plus élevée (« système chaud ») ont une énergie cinétique d'agitation thermique supérieure à celle du système ayant une température plus basse (« système froid »). Lors des chocs, les premières cèdent de l'énergie aux particules de la paroi et les deuxièmes reçoivent de l'énergie de la paroi.
- La convection thermique met en jeu un fluide en mouvement.
 Le fluide passe d'un système à l'autre, reçoit de l'énergie du système chaud et cède de l'énergie au système froid.
- Le rayonnement thermique met en jeu les ondes électromagnétiques émises par les particules microscopiques des systèmes à cause de leur mouvement d'agitation thermique (quelle que soit la nature des systèmes). Les

photons émis par chacun des systèmes sont reçus par l'autre qui en absorbe une partie. Il y a ainsi transfert d'énergie dans les deux sens, mais du fait que le système chaud émet plus d'énergie que le système froid, le transfert d'énergie global se fait du système chaud vers le système froid.



Les trois modes de transfert thermique entre un système Σ_1 de température T_1 et un système Σ_2 de température $T_2 < T_1$.

Exemple:

Le transfert thermique entre l'intérieur d'une habitation et l'extérieur est :

- Conductif à travers un mur ou une fenêtre fermée;
- Convectif à travers une fenêtre ouverte,
- Radiatif quand le rayonnement du soleil entre à travers une vitre.

La cuisson d'un plat dans un four électrique classique est due à un transfert thermique entre la résistance chauffante du four et le plat qui passe pour l'essentiel par le rayonnement et pour une petite par la conduction thermique à travers l'air. Dans un four dit « à chaleur tournante» un ventilateur provoque un mouvement d'air à l'intérieur du four qui ajoute un transfert par convection très efficace.

III-3) Transformation adiabatique

a) Définition

Une transformation adiabatique est une transformation au cours de laquelle le système n'a aucun échange d'énergie par transfert thermique : Q= O.

Dans le cas d'une transformation adiabatique, la température du système dans l'état final n'est pas déterminée par une condition d'équilibre thermique, puisque le système n'est en contact thermique avec aucun autre système.

b) Réalisation pratique

La définition théorique de la transformation adiabatique correspond à une idéalisation dont la réalité ne peut que s'approcher. Pour réaliser une transformation adiabatique, on entoure le système d'un matériau dit « isolant thermique », à travers lequel la conduction thermique est difficile.

Exemple:

La vase de Dewar est un récipient à double paroi de verre entre lesquelles il y a de l'air sous très faible pression pour réduire fortement le transfert thermique conductif. De plus la paroi de verre est métallisée pour réduire le transfert thermique par rayonnement. Les calorimètres utilisés en travaux pratiques (voir chapitre suivant), bien que de fabrication moins coûteuse, sont conçus sur le même principe.

L'efficacité d'un tel dispositif est limitée dans le temps et le système finit toujours par être en équilibre thermique avec l'extérieur. Le rôle de l'isolation thermique est d'augmenter fortement le temps caractéristique d'établissement de l'équilibre thermique. Celui-ci peut facilement devenir très long.

Une transformation rapide peut être considérée comme adiabatique.

III-4) Notion de thermostat

a) Définition

Un thermostat est un système thermodynamique dont la température T_0 ne varie pas, même s'il échange de l'énergie (sous forme de transfert thermique ou de travail).

b) Intérêt pratique de la notion de thermostat

Soient deux systèmes monophasés Σ et Σ_0 échangeant de l'énergie par transfert thermique et de capacités thermiques à volume constant C_v et C_{vo} telles que C_{vo} » C_v . Lorsqu'un transfert thermique algébrique Q est fourni par Σ_0 et reçue par Σ , dans une transformation où les volumes des deux systèmes sont constants, cela induit des variations ΔT et ΔT_0 des températures respectives de Σ et Σ_0 telles que :

$$Q = \Delta U_{\Sigma} = C_{v} \Delta T \ et - Q = \Delta U_{\Sigma_{0}} = C_{v0} \Delta T_{0}$$

d'après la conservation de l'énergie, appliqué successivement aux deux systèmes. Il en résulte que :

$$|\Delta T_0| = \frac{C_v}{C_{v0}} |\Delta T| \ll |\Delta T|$$

Ainsi le système lo peut être considéré comme un thermostat dans son interaction avec Σ .

Lorsque deux systèmes échangeant de l'énergie par transfert thermique ont des capacités thermiques d'ordres de grandeur très différents, on peut modéliser le système ayant la plus grande capacité thermique par un thermostat.

Exemple:

Les centrales nucléaires sont construites à proximité d'un fleuve dont elles utilisent l'eau pour le refroidissement et qui peut être modélisé par un thermostat.

On peut aussi réaliser un thermostat de petite taille. Au laboratoire on utilise un mélange eau-glace. En effet un tel mélange est à température fixe, voisine de 273 K sous la pression atmosphérique. Quand ce système reçoit (resp. cède) un transfert thermique Q > 0, cela provoque la fusion d'une partie de la glace (resp. la solidification d'une partie de l'eau liquide) mais la température ne change pas. Bien sûr, il ne faut pas que la quantité d'énergie Q soit trop grande.

III-5) Retour sur les transformations monotherme et isotherme

On peut reformuler la définition de la transformation monotherme :

Une transformation est monotherme si le système échange de l'énergie par transfert thermique avec un et un seul thermostat.

Pour qu'une transformation soit isotherme il faut que la température du système ne varie pas. Or dans la plupart des cas (l' exception étant le mélange diphasé évoqué ci-dessus) tout apport d' énergie au système tend à faire varier sa température.

La réalisation d'une transformation isotherme nécessite donc un contrôle de la température que l'on obtient en mettant le système en contact avec un thermostat. Il faut que les échanges thermiques entre le système et le thermostat soient faciles. Ceux-ci doivent donc être séparés par une paroi diathermane, c'est-à-dire perméable à la chaleur. De plus l'évolution du système doit être suffisamment lente pour que les échanges thermiques aient le temps de s'établir et assurent le maintien de la température T du système à la même valeur que la température T_o du thermostat. La plupart des transformations isothermes sont des transformations lentes, au cours desquelles le système est constamment en équilibre thermique avec un thermostat.

III-6) Choix d'un modèle : adiabatique ou isotherme?

Les transformations isotherme et adiabatique sont deux transformations idéales aux caractères diamétralement opposés : la transformation adiabatique suppose des échanges thermiques nuls alors que la transformation isotherme n'est possible (dans la majeure partie des cas) que s'il y a des échanges thermiques avec un thermostat.

Une transformation réelle pourra se rapprocher de l'une ou l'autre des ces deux transformations limites et il importe de savoir choisir la bonne modélisation.

Si la transformation est très rapide ou si les parois délimitant le système sont très épaisses on pourra faire une modélisation adiabatique.

Si la transformation est lente et que le système est en contact avec un thermostat on pourra faire une modélisation isotherme.

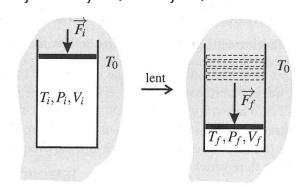
Exemple

Un gaz est contenu dans un récipient fermé par un piston de surface S sur lequel on exerce une force \vec{F} . On impose ainsi, par la condition d'équilibre mécanique du piston, une pression P=F/S au gaz. Dans l'état initial $\vec{F} = \vec{F}_i$ et dans l'état final $\vec{F} = \vec{F}_f$.

Dans une première expérience le récipient a des parois fines, diathermanes. On augmente lentement la force \vec{F} provoquant une

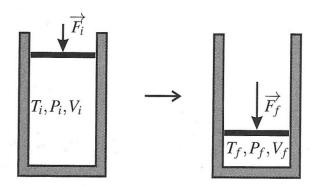
descente progressive du piston et laissant le gaz s'équilibrer thermiquement à chaque instant avec le milieu extérieur, de température T_o . On peut modéliser la compression par une transformation isotherme.

Dans ce cas, on peut trouver tous les paramètres d'état du gaz dans l'état final : $P_f = F_f/S$, $T_f = To$ et d'après l'équation d'état du gaz parfait : $V_f = \frac{nRT_f}{p_f} = \frac{p_i V_i}{p_f} \frac{T_f}{T_i} = \frac{F_i V_i}{F_f} \frac{T_0}{T_i}$



Compression isotherme.

Dans une autre expérience les parois du récipient sont épaisses. On augmente la force trop rapidement pour que l'échange thermique entre le gaz et l'extérieur puisse se faire. On peut modéliser la compression comme une transformation adiabatique. Dans ce cas, l'équation d'état ne suffit pas pour trouver l'état final car on n'a pas de renseignement sur la température Tf.



Compression adiabatique.

Enfin, l'équilibre mécanique étant atteint beaucoup plus rapidement que l'équilibre thermique, on peut imaginer une transformation à la fois adiabatique et mécaniquement réversible, suffisamment rapide pour qu'il n'y ait pas de transfert thermique, mais suffisamment lente pour qu'il y ait équilibre mécanique à chaque instant. L'équation d'état ne suffit pas dans ce cas pour trouver l'état final.