Physique: PC

OD4 – Phénomènes de propagation linéaire

A – Travaux dirigés

OD41 – Onde de marée

La relation de dispersion d'une onde à la surface d'une eau de profondeur h est donnée par :

$$\omega^2 = \left(gk + \frac{\gamma}{\mu}k^3\right)\tanh(kh)$$

où g est l'accélération de la pesanteur, μ la masse volumique de l'eau et γ la constante de tension superficielle à l'interface eau-air.

- 1°) Déterminer la dimension de γ.
- 2°) Déterminer la distance caractéristique l_c , appelée longueur capillaire, qui permet de comparer les effets de la tension superficielle (Second terme) et ceux de la pesanteur (Premier terme).
- 3°) Comment se simplifie l'équation de dispersion si la longueur d'onde λ est très inférieure à l_c ? Si elle est très supérieure à l_c ?

Donner dans chaque cas la vitesse de phase v_{φ} et la vitesse de groupe v_g dans un milieu de faible profondeur $(h \gg \lambda)$ puis dans un milieu de grande profondeur $(h \ll \lambda)$. Quand a-t-on dispersion ?

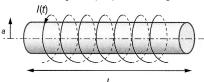
4. On donne $\gamma = 7.3 \times 10^{-2} Jm^{-2}$

Calculer l_c . Calculer v_{φ} et v_g pour une onde de marée dans l'océan (on prendra $\lambda=1000km$ et h=5km), une houle de longueur d'onde 5 m dans un océan profond, puis pour une onde dans une cuve à onde ($\lambda=3cm$ et h=1mm).

$$\text{R\'ep}: 1^{\circ}) \; \textit{En Jm}^{-2} \quad 2^{\circ}) \; l_c = \sqrt{\frac{r}{\mu g}} \qquad \qquad 3^{\circ}) \; v_g = v_{\varphi} \; \textit{si} \; \lambda \gg l_c \; \textit{et} \; \lambda \gg h \qquad \qquad 4^{\circ}) \; v_{\varphi} (\textit{onde de mar\'ee}) = 2.8 m s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-1} \; \textit{et} \; v_{\varphi} (\textit{cuve}) = 10 \; \textit{cm} \; s^{-$$

OD42 - Effet de peau dans un cylindre métallique

Un cylindre métallique de rayon a et grande longueur L, et de conductivité γ , est placé à l'intérieur d'un solénoïde de très grande longueur parcouru par un courant $I = I_0 \cos(\omega t)$ à la fréquence f = 1 kHz.

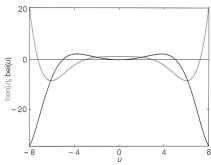


- a) Quelle est l'unité de $\delta = \sqrt{\frac{1}{\mu_0 \gamma \omega}}$? Calculer cette quantité.
- b) On observe un échauffement du cylindre. Expliquer.
- c) Montrer que l'équation de Maxwell-Ampère prend une forme simplifiée dans le cylindre métallique. En déduire l'équation aux dérivées partielles satisfaite par le champ magnétique dans le cylindre métallique.
- d) Quelle est la forme du champ magnétique \vec{B} dans le cylindre ? Montrer que son amplitude complexe $\underline{\vec{B}}$ obéit à l'équation :

$$\frac{d}{du}\left(u\,\,\frac{d\underline{B}}{du}\right) = iu\underline{B}$$

où u est une variable qu'on définira.

e) La solution est une fonction de Bessel-Kelvin, dont les parties réelle ber et imaginaire bei sont tracées ci-dessous. Commenter.



Physique: PC

Que dire des courants?

On donne : $\gamma = 10^8 \Omega^{-1} m^{-1}$, et en coordonnées cylindriques :

Rép : a) Longueur de 1,1mm b) Effet Joule

c) $\vec{\Delta}\vec{B} = \mu_0 \gamma \frac{\partial \vec{B}}{\partial t}$ d) $u = \frac{r}{\delta}$ e) Effet de peau... f) Même comportement.

B – Exercices supplémentaires

OD43 – Ondes planes progressives harmoniques dans un conducteur métallique

Dans un conducteur métallique, les électrons assurent la conduction et nous admettrons que leur mouvement est régi par l'équation : $\frac{\partial \vec{v}}{\partial t} + \frac{\vec{v}}{\tau} = -\frac{e}{m}\vec{E}$ où τ est un temps caractéristique reflétant l'interaction des électrons avec le réseau cristallin. La densité volumique d'électrons est notée n.

1°) Montrer qu'il est possible de définir une conductivité complexe du métal si n est une constante. Donner le lien entre γ_0 conductivité en régime indépendant du temps et τ .

Par la suite, la densité volumique d'électrons notée n est supposée uniforme et constante et on étudie la propagation d'une onde plane progressive monochromatique en notation complexe.

a) Montrer que, si la densité volumique de charges est nulle, on a affaire à des ondes transverses.

b) Montrer que l'équation de propagation s'écrit : $\Delta \vec{\underline{E}} - \frac{1}{c^2} \frac{\partial^2 \vec{\underline{E}}}{\partial t^2} = \mu_0 \frac{\partial \vec{\underline{I}}}{\partial t}$

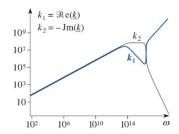
c) En déduire la relation de dispersion en fonction de γ .

d) On pose : $\omega_p^2 = \frac{ne^2}{\epsilon_0 m}$. Exprimer k^2 en fonction de τ , ω et ω_p .

Dans le cas du cuivre : $n=10^{29}m^{-3}$, $\tau=10^{-14}s$, e=1,6 $10^{-16}C$ et m=9,1 $10^{-31}kg$.

e) Calculer les pulsations caractéristiques $\frac{1}{\epsilon}$ et ω_p . À quel domaine d'ondes correspondent-elles ?

3°) On pose $\underline{k}=k_1-j\;k_2$. On a représenté l'évolution de $k_1\;et\;k_2$ dans un diagramme « log – log » en fonction de ω . En déduire l'existence de trois régimes asymptotiques dont on précisera les caractéristiques.



4°) On se place à basse fréquence $\omega \ll \frac{1}{\epsilon}$:

a) Donner une expression simplifiée de k. Exprimer les champs électrique et magnétique pour une OPPM se propageant selon les z croissants et polarisées selon (Ox).

Montrer que l'onde s'atténue rapidement avec une profondeur caractéristique dont on donnera l'expression en fonction ω de et γ_0 . Calculer le vecteur de Poynting et sa valeur moyenne. Que remarque-t-on à la limite du très bon conducteur?

5°) On se place à haute fréquence $\omega \gg \frac{1}{2}$:

a) Montrer que suivant les valeurs de ω , l'onde peut ou ne peut pas se propager. À quel domaine d'ondes correspond la transparence?

Dans le cas où il n'y a pas propagation, caractériser l'onde en exprimant ses champs pour une onde plane monochromatique s'atténuant selon les z croissants et polarisée selon (Ox). Calculer son vecteur de Poynting et sa valeur moyenne. Comparer au résultat de 4b).

Rép : 1°) $\gamma_0 = \frac{ne^2\tau}{m}$ 2a) Maxwell-Gauss... 2b) MF et MA 2c) $k^2 = \frac{\omega^2}{c^2} - j\mu_0\gamma\omega$ 2d) $k^2 = \frac{1}{c^2}\left(\omega^2 - \frac{\omega_p^2}{1 + \frac{1}{j\omega\tau}}\right)$ 2e) $\omega_p : UV, \frac{1}{\tau} : IR$ 3°) Cf correction 4a) $k^2 \sim j\mu_0\gamma_0\omega$ 4b) Onde réfléchie sans perte d'énergie 5a) $k^2 = \frac{1}{c^2}\left(\omega^2 - \omega_p^2\right)$ 5b) Onde évanescente

Laurent Pietri Lycée Joffre - Montpellier

OD44 - Propagation dans l'ionosphère, influence du champ magnétique terrestre

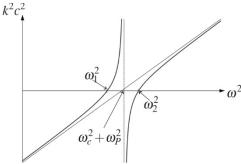
Un plasma peu dense, est plongé dans un champ magnétique statique $\overrightarrow{B_0}$. Une onde électromagnétique plane polarisée rectilignement se propage dans ce plasma dans une direction perpendiculaire à $\overrightarrow{B_0}$. On note m la masse des électrons du plasma, e la charge élémentaire et n_0 la densité volumique d'électrons dans le plasma.

1°) La relation de dispersion du plasma est-elle modifiée lorsque les directions du champ électrique \vec{E} de l'onde et le champ magnétique $\vec{B_0}$ sont parallèles ou perpendiculaires ?

Dans le cas où elle est modifiée, on montre que la relation de dispersion s'écrit :

$$k^2c^2 = \frac{\left(\omega^2 - \omega_p^2\right)^2 - \omega_c^2\omega^2}{\omega^2 - \omega_p^2 - \omega_c^2} \text{ où } \omega_c = \frac{eB_0}{m} \text{ et } \omega_p^2 = \frac{n_0e^2}{m\varepsilon_0}$$

2°) On fournit le tracé de la courbe $k^2c^2 = f(\omega^2)$ en déduire le(s) domaine(s) de pulsation pour le(s)quel(s) l'onde peut se propager dans le plasma.



3°) L'ionosphère se comporte comme un plasma de densité uniforme n_0 . On envoie verticalement une onde depuis la Terre. Lorsque l'émission de l'onde est telle que le champ électrique est parallèle au champ magnétique terrestre, il y a écho (donc réflexion) pour une longueur d'onde émise supérieure à $\lambda_0 = 42,70 \, m$. Lorsque ces deux directions sont perpendiculaires, l'écho se produit pour une longueur d'onde supérieure à $\lambda_1 = 38,90 \, m$.

a) En déduire les valeurs numériques de la densité volumique d'électrons n_0 et du champ magnétique terrestre B_0 .

b) Le champ magnétique terrestre décroît en fonction de l'altitude z selon la loi : $B_0(z) = B_0(0) \left(1 + \frac{z^2}{R^2}\right)^{-\frac{3}{2}}$ où $B_0(0) = 47000 \times 10^{-8} T$ est sa valeur au niveau du sol et R = 6360 km le rayon terrestre.

Calculer l'altitude de la couche réfléchissante. Proposer une application de cette propriété.

Rép : 1°) Modifié si $\overrightarrow{B_0}$ et \overrightarrow{E} sont perpendiculaires

2°) L'onde se propage si $k^2 > 0$

3a) $B_0 = 4.6 \ 10^{-5} T$

3b) h = 313km

OD45 - Plasma

On étudie la propagation d'une onde électromagnétique dans un plasma globalement neutre constitué de N électrons libres par unité de volume de masse m et de N ions positifs par unité de volume de masse M. Une onde électromagnétique : $\underline{\vec{E}}(M,t) = \underline{E}_{\rho} \, \mathrm{e}^{\mathrm{i}(\omega t - kz)} \, \overline{u_{\chi}}$ se propage dans ce milieu. On pose $\omega_p^2 = \frac{Ne^2}{m\varepsilon_0}$. On suppose que M » m.

Données:
$$\varepsilon_0 = \frac{1}{36\pi 10^9} Fm^{-1}$$
; $e = 1,6 \ 10^{-19} \ C$; $N = 1,22 \ 10^{12} \frac{\text{électrons}}{m^3}$, $c = 3 \ 10^8 \ m. \ s^{-1}$; $m = 9,1 \ 10^{-31} \ kg$

1°) Montrer que l'action du champ magnétique sur un électron est négligeable devant celle du champ électrique. Exprimer les vecteurs courant de conduction $\overrightarrow{\underline{f_c}}$ et courant de déplacement $\overrightarrow{\underline{f_d}}$ en fonction de $\overrightarrow{\underline{E}}$, ω , ω_p et ε_0 . Établir l'équation de propagation et la relation de dispersion.

2°) Montrer que la fréquence de l'onde doit être supérieure à une fréquence de coupure f_c pour avoir propagation. Calculer f_c . Dans le cas où il y a propagation, représenter graphiquement la vitesse de phase et la vitesse de groupe en fonction de la fréquence. Exprimer l'indice dans le plasma en fonction de ω et ω_p .

Laurent Pietri $\sim 3 \sim$ Lycée Joffre - Montpellier