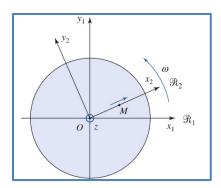
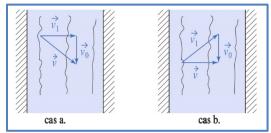

MC2 – Changement de référentiels

A – Travaux dirigés


MC21 – Translation circulaire et rotation

1. Translation circulaire

Une grande roue de fête foraine, de rayon R, tourne à vitesse angulaire constante ω autour d'un axe horizontal (Ox). R_1 est le référentiel terrestre et R_2 le référentiel lié à la nacelle. Exprimer dans une base appropriée la vitesse d'entraînement et l'accélération d'entraînement de R_2 / R_1 . (La nacelle effectue un mouvement de translation circulaire par rapport à R_1)



2. Rotation

Soit un plateau horizontal tournant avec une vitesse angulaire ω autour d'un axe vertical fixe (manège par exemple). R_1 est le référentiel terrestre et R_2 le référentiel lié au plateau. Un mobile de position M décrit à vitesse constante v l'axe (Ox_2) , lié à R_2 . Exprimer $\vec{v}(M)|_{R_1}$ et $\vec{a}(M)|_{R_1}$ dans la base $(\overrightarrow{e_{x_2}}, \overrightarrow{e_{y_2}})$. Rép : 1. $\overrightarrow{v_e} = \omega R \vec{J}$ et $\overrightarrow{a_e} = -\omega^2 R \vec{l}$ 2. $\overrightarrow{v_e} = \omega x_2 \overrightarrow{e_{y_2}}$ et $\overrightarrow{a_e} = \frac{d\omega}{dt} x_2 \overrightarrow{e_{y_2}} - \omega^2 x_2 \overrightarrow{e_{x_2}}$

MC22 – Traversée d'une rivière

Un nageur, dont la vitesse par rapport à l'eau est $\overrightarrow{v_1}$, veut traverser une rivière de largeur l. On suppose que le courant a une vitesse $\overrightarrow{v_0}$ uniforme. Déterminer le temps de traversée τ si :

- 1. Il nage perpendiculairement aux berges, en se laissant déporter par le courant ;
- 2. Il suit une trajectoire perpendiculaire aux berges.

Rép : 1.
$$\tau_1 = \frac{l}{v_1}$$
 2. $\tau_2 = \frac{l}{\sqrt{v_1^2 - v_0^2}}$

B – Exercices supplémentaires

MC23 – Traversée d'un tapis roulant

Lors d'un jeu télévisé, un joueur A doit traverser un tapis roulant de largeur a, pour donner un paquet à un second joueur B. Le tapis se déplace à une vitesse constante $\overrightarrow{V_t}$ par rapport au sol. Lorsque le joueur court sur le tapis, sa vitesse par rapport au tapis a pour norme V constante.

- 1. Le joueur A se déplace avec une vitesse \vec{V} perpendiculaire au bord du tapis. Où doit se placer B pour réceptionner le paquet ? Quel est le temps t_1 de traversée du tapis ?
- 2. Pour le deuxième essai, le joueur B est posté en face du joueur A. Dans quelle direction A doit-il courir ? Quel est le temps de traversée t_2 ?
- 3. On suppose maintenant que la vitesse \vec{V} fait un angle θ quelconque avec $\vec{V_t}$. Déterminer le temps de traversée t3 en fonction de a, V et θ . Pour quelle valeur de θ le temps de traversée est-il le plus court ?

Rép : 1.
$$t_1 = \frac{a}{v}$$
 2. $t_2 = \frac{a}{\sqrt{v^2 - v_t^2}}$ 3. $t_3 = \frac{a}{v \sin \theta}$

MC24 – Insecte sur l'aiguille des secondes

Un insecte se déplace sur l'aiguille des secondes d'une horloge qui a une longueur égale à 20 cm. À l'instant t=0 l'insecte est au centre de l'horloge, l'aiguille marquant 15 s, et 60 s plus tard il arrive à l'extrémité de l'aiguille. Il se déplace à vitesse constante par rapport à l'aiguille.

- 1. Dans cette question on repère l'insecte par ses coordonnées polaires (r,θ) dans le référentiel lié à l'horloge. On prend $\theta=0$ pour repérer la verticale ascendante.
 - a) Exprimer r et θ en fonction du temps.
 - b) Construire la trajectoire de l'insecte à l'aide de quelques points.
 - c) Donner l'expression des vecteurs vitesse et accélération de l'insecte. Calculer leurs normes pour t = 52,5 s. Les dessiner à cet instant.
- 2. Retrouver l'expression de la vitesse et de l'accélération en considérant l'insecte se déplaçant dans un référentiel $R_A(0, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$ en rotation par rapport à celui de la première question, l'axe (OX) étant confondu avec l'aiguille.

Rép : 1. a)
$$r(t) = 0.44(t - 15)et \ \theta(t) = \frac{\pi}{30}t$$
 b)... c) $v = 1.8cms^{-1} \ et \ a = 0.21 \ cms^{-2}$ 2°) $\overrightarrow{v(t)}_{p} = v\overrightarrow{u_r} + r\dot{\theta} \ \overrightarrow{u_{\theta}}$...