MQ1 – Longueurs d'onde de De Broglie

- Calculer la longueur d'onde de De Broglie d'un homme de 75 kg marchant à 5,0 $km \cdot h^{-1}$. Comparer à la largeur de la porte de votre chambre et conclure.
- Quelle énergie, en électronvolts, doit-on communiquer à des électrons, de masse $m_e = 9.11 \cdot 10^{-31} kg$, pour que leur longueur d'onde de de Broglie soit égale à $0,1 \ nm$?
- Calculer les longueurs d'onde de Broglie pour un électron et un proton, de masse $m_p = 1,67.10^{-27} \ kg$, dont les énergies cinétiques valent toutes 100 eV.

MQ2 - Vitesse de propagation de l'onde de De Broglie

Une particule de masse m se déplace à la vitesse v très inférieure à la vitesse de la lumière. Elle n'est soumise à aucune force donc son énergie E se réduit à son énergie cinétique. On souhaite trouver la vitesse de propagation de l'onde de De Broglie.

- Exprimer le vecteur d'onde k de l'onde de De Broglie en fonction de m et v.
- En admettant que la formule reliant l'énergie du photon à sa pulsation est aussi valable pour la particule, trouver une expression ω en fonction de m et v.
- En déduire la vitesse de propagation de l'onde de De Broglie $v_B = \frac{\omega}{k}$. 3.

MQ3 - L'atome d'hydrogène

On considère un atome d'hydrogène sphérique de taille caractéristique a. On admet l'approximation suivante pour l'énergie de l'électron dans l'atome :

$$E = \frac{\hbar^2}{2ma^2} - \frac{e^2}{4\pi\varepsilon_0 a} \text{ où } m = m_e = 9,11.10^{-31} kg$$
 Où $e = 1,60 \cdot 10^{-19} C$, $\frac{1}{4\pi\varepsilon_0} = 9,00 \cdot 10^9 \text{ USI}$, $\hbar = 1,05 \cdot Js$

- 1. Que représente le premier terme dans cette expression ? D'où provient-il? Que représente le deuxième terme ?
- Déterminer la valeur de a_{min} de a qui minimise cette expression. Faire l'application numérique. Ce calcul donne l'ordre de grandeur de la taille de l'atome d'hydrogène.
- Déterminer la valeur minimale de l'expression approchée de E. La calculer numériquement.
- En mécanique classique, pour un électron en orbite circulaire de rayon a autour du noyau, on trouve une énergie mécanique : $E = -\frac{e^2}{8\pi\epsilon_0 a}$ De plus l'électron en mouvement perd de l'énergie par rayonnement électromagnétique. Expliquer la phrase suivante : « C'est l'inégalité de Heisenberg qui est à la base de la stabilité des atomes. »

MQ4 – Energie minimale d'un oscillateur harmonique

Un oscillateur harmonique unidimensionnel a une masse m, une pulsation propre ω_0 . Il est soumis à une énergie potentielle $V(x) = \frac{1}{2}m\omega_0^2x^2$. La position moyenne < x > et la quantité de mouvement moyenne $< p_x >$ de l'oscillateur sont nulles.

Utiliser la relation d'incertitude de Heisenberg spatiale pour montrer que la valeur moyenne de l'énergie de cet oscillateur est bornée inférieurement :

$$\langle E \rangle \ge \frac{\hbar^2}{8m(\Delta x)^2} + \frac{1}{2}m\omega_0^2(\Delta x)^2$$

où Δx représente l'indétermination quantique sur la position x de l'oscillateur.

- Déterminer la valeur minimale que peut prendre la valeur moyenne de l'énergie de l'oscillateur en fonction de \hbar et ω_0 . Exprimer l'amplitude de l'indétermination quantique Δx en fonction de m, \hbar et ω_0 .
- À température non nulle, en raison de l'agitation thermique, il existe aussi des fluctuations Δx_T de la position de l'oscillateur autour de sa valeur moyenne. On donne : $\Delta x_T = \sqrt{\frac{k_B T}{m \omega_0^2}}$
 - Donner l'expression de la température T_c en dessous de laquelle les fluctuations quantiques sont plus importantes que les fluctuations thermiques.
 - Application numérique.
- Donner la valeur numérique de T_c dans le cas d'un oscillateur mécanique constitué d'une masse suspendue à un ressort. Choisir une fréquence d'oscillation correspondant à une expérience réalisable au laboratoire de physique. Commenter la valeur obtenue pour T_c .
- En 2010, une équipe de l'Université de Californie à Santa Barbara a atteint le régime quantique en amenant un micro résonateur piézoélectrique de fréquence très élevée (6,0 GHz) à une température de 25 mK.

Commenter le choix d'un oscillateur de fréquence élevée et d'une température aussi faible.

MQ5 - Fonction d'onde d'une particule dans un puits infini

Une particule quantique est confinée dans la zone comprise entre les plans x=0 et $x=\ell$ dans un puits infini. On admet que sa fonction d'onde est de la forme :

$$\psi(x,t) = A\sin(kx)e^{-i\omega t}$$

où A, k et ω sont des constantes réelles positives.

- 1°) Déterminer les valeurs possibles de k en fonction de $\boldsymbol{\ell}$ et d'un entier n positif quelconque.
- 2°) La probabilité de trouver la particule dans l'intervalle [x,x+dx] est $|\psi(x,t)|^2$. Justifier la condition de normalisation : $\int_0^t |\psi(x,t)|^2 = 1.$ Utiliser cette condition pour trouver l'expression de A en fonction de ℓ .
 - 3°) Tracer $|\psi(x,t)|^2$ en fonction de x dans les cas n=1 et n=2. Commenter. Comparer aussi au cas d'une particule classique.